From Encyclopedia of Mathematics
Jump to: navigation, search

A third-order plane algebraic curve whose equation takes the form


in Cartesian coordinates, and


in polar coordinates. The coordinate origin is a node with tangents $y=\pm x$ (see Fig.). The asymptote is $x=d$. The area of the loop is

$$S=2d^2-\frac{1}{2\pi d^2}.$$

The area between the curve and the asymptote is

$$S_2=2d^2+\frac{1}{2\pi d^2}.$$

A strophoid is related to the so-called cusps (cf. Cusp).

Figure: s090630a


[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[2] A.S. Smogorzhevskii, E.S. Stolova, "Handbook of the theory of planar curves of the third order" , Moscow (1961) (In Russian)



[a1] F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971)
[a2] J.D. Lawrence, "A catalog of special planar curves" , Dover, reprint (1972)
How to Cite This Entry:
Strophoid. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article