# Orthogonal projector

Jump to: navigation, search

orthoprojector

A mapping of a Hilbert space onto a subspace of it such that is orthogonal to : . An orthogonal projector is a bounded self-adjoint operator, acting on a Hilbert space , such that and . On the other hand, if a bounded self-adjoint operator acting on a Hilbert space such that is given, then is a subspace, and is an orthogonal projector onto . Two orthogonal projectors are called orthogonal if ; this is equivalent to the condition that .

Properties of an orthogonal projector. 1) In order that the sum of two orthogonal projectors is itself an orthogonal projector, it is necessary and sufficient that , in this case ; 2) in order that the composite is an orthogonal projector, it is necessary and sufficient that , in this case .

An orthogonal projector is called a part of an orthogonal projector if is a subspace of . Under this condition is an orthogonal projector on — the orthogonal complement to in . In particular, is an orthogonal projector on .