Nekrasov integral equation

From Encyclopedia of Mathematics
Jump to: navigation, search

A non-linear integral equation of the form


where $R$ and $K$ are known functions, $K$ being symmetric, $\phi$ is the unknown function, and $\lambda$ is a numerical parameter. Integral equations of this type were obtained by A.I. Nekrasov (see [1]) in the solution of problems arising in the theory of waves on the surface of a fluid. Under certain conditions Nekrasov has constructed a solution of \ref{*} in the form of a series in powers of a small parameter; its convergence has been proved by the method of majorants.

Sometimes an equation of the type \ref{*} is called a Hammerstein equation, although Nekrasov [2] published his investigations before A. Hammerstein [3].


[1] A.I. Nekrasov, "Collected works" , 1 , Moscow (1961) (In Russian)
[2] A.I. Nekrasov, Izv. Ivanovo-Vozn. Politekhn. Inst. , 6 (1922) pp. 155–171
[3] A. Hammerstein, "Nichtlineare Integralgleichungen nebst Anwendungen" Acta Math. , 54 (1930) pp. 117–176



[a1] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Nekrasov integral equation. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article