# Denjoy-Luzin theorem

*on absolutely convergent trigonometric series*

If the trigonometric series

$$\frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos nx+b_n\sin nx\label{1}\tag{1}$$

converges absolutely on a set of positive Lebesgue measure, then the series made up of the absolute values of its coefficients,

$$\frac{|a_0|}{2}+\sum_{n=1}^\infty|a_n|+|b_n|,\label{2}\tag{2}$$

converges and, consequently, the initial series \eqref{1} converges absolutely and uniformly on the entire real axis. However, the property of the absolute convergence set of the series \eqref{1} being of positive measure, which according to A. Denjoy and N.N. Luzin is sufficient for the series \eqref{2} to converge, is not necessary. There exist, for example, perfect sets of measure zero, the absolute convergence on which of the series \eqref{1} entails the convergence of the series \eqref{2}.

The theorem was independently established by Denjoy [1] and by Luzin [2]; various generalizations of it also exist [3].

#### References

[1] | A. Denjoy, "Sur l'absolue convergence des séries trigonométriques" C.R. Acad. Sci. , 155 (1912) pp. 135–136 |

[2] | N.N. Luzin, Mat. Sb. , 28 (1912) pp. 461–472 |

[3] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |

#### Comments

For generalizations see, e.g., [a1], Chapt. 6.

#### References

[a1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |

**How to Cite This Entry:**

Luzin-Denjoy theorem.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Luzin-Denjoy_theorem&oldid=43325