Hankel functions

From Encyclopedia of Mathematics
Jump to: navigation, search

2010 Mathematics Subject Classification: Primary: 33C10 [MSN][ZBL]

More commonly called Bessel functions (or Cylinder functions) of the third kind. These functions were introduced by H. Hankel in 1869.

They may be defined in terms of Bessel functions of the first and second kind (see Neumann function for the latter) as follows: \begin{align} &H^{(1)}_\nu = J_\nu + i Y_\nu\, ,\label{e:def_1}\\ &H^{(2)}_\nu = J_\nu - i Y_\nu\, .\label{e:def_2}\\ \end{align} $\nu$ is here a complex parameter. In particular, when $\nu\not\in \mathbb Z$, we have the expressions \begin{align} &H^{(1)}_\nu (z) = \frac{J_{-\nu} (z) - e^{-\nu \pi i} J_\nu (z)}{i\sin \nu\pi}\\ &H^{(2)}_\nu (z) = \frac{J_{-\nu} (z) - e^{\nu \pi i} J_\nu (z)}{-i\sin \nu\pi i}\, , \end{align} whereas for integer values $n$ of $\nu$ analogous formulas hold if we replace the right hand sides with their limits as $\nu\to n$.

This implies the important relations \begin{align*} & H^{(1}_{-\nu} (z) = e^{i\nu \pi} H^{(1)}_\nu (z)\\ &H^{(2)}_{-\nu} (z) = e^{-i\nu \pi} H^{(2)}_\nu (z)\, . \end{align*} When $\nu=p$ is real, the Bessel functions of the first kind take real values on the real axis. So it is obvious that, for $\nu = p$ real, $H^{(1)}_p$ and $H^{(2)}_p$ take complex conjugate values on the real axis. Moreover, \[ i^{p+1} H^{(1)}_p (ix) \qquad \mbox{and} \qquad i^{-(p+1)} H^{(2)}_p (-ix) \] are real if $x$ is real and positive.

Hankel functions have simple asymptotic formulas for large $|z|$ when $\nu=p$ is real: \begin{align*} &H^{(1)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, ,\\ &H^{(2)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(- i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, . \end{align*} The Hankel functions of half-integral $p = n +\frac{1}{2}$, $n\in \mathbb Z$, can be expressed in terms of elementary functions, in particular: \begin{align*} &H^{(1)}_{1/2} (z) = \sqrt{\frac{2}{\pi z}} \frac{e^{iz}}{i}\, ,\\ &H^{(2)}_{1/2} (z) = -\sqrt{\frac{2}{\pi z}} \frac{e^{-iz}}{i}\, . \end{align*} See Cylinder functions for additional references.

How to Cite This Entry:
Hankel functions. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article