Automorphic form

From Encyclopedia of Mathematics
Jump to: navigation, search

A meromorphic function on a bounded domain of the complex space that, for some discrete group of transformations operating on this domain, satisfies an equation:

Here is the Jacobian of the mapping and is an integer known as the weight of the automorphic form. If the group acts fixed-point free, then automorphic forms define differential forms on the quotient space and vice versa. Automorphic forms may be used in the construction of non-trivial automorphic functions (cf. Automorphic function). It has been shown that if is a function that is holomorphic and bounded on a domain , then the series

converges for large values of , thus representing a non-trivial automorphic function of weight . These series are called Poincaré theta-series.

The classical definition of automorphic forms, given above, has recently served as the starting point of a far-reaching generalization in the theory of discrete subgroups of Lie groups and adèle groups.


[1] H. Poincaré, , Oeuvres de H. Poincaré , Gauthier-Villars (1916–1965)
[2] C.L. Siegel, "Automorphe Funktionen in mehrerer Variablen" , Math. Inst. Göttingen (1955)


References [a2] and [a3] can serve to get some idea of modern developments and topics in the theory of automorphic forms and its relations with other parts of mathematics. (Cf. the comments to the article Automorphic function for a more general notion).


[a1] W.L. Baily jr., "Introductory lectures on automorphic forms" , Iwanami Shoten & Princeton Univ. Press (1973)
[a2] A. Borel (ed.) W. Casselman (ed.) , Automorphic forms, representations and -functions , Proc. Symp. Pure Math. , 33:1–2 , Amer. Math. Soc. (1979)
[a3] S.S. Gelbart, "Automorphic forms on adèle groups" , Princeton Univ. Press (1975)
How to Cite This Entry:
Automorphic form. A.N. Parshin (originator), Encyclopedia of Mathematics. URL:
This text originally appeared in Encyclopedia of Mathematics - ISBN 1402006098