# Adjoint surface

From Encyclopedia of Mathematics

A surface $Y$ that is in Peterson correspondence with a given surface $X$ and is, moreover, such that the asymptotic net on $Y$ corresponds to a conjugate net $\sigma$ on $X$ with equal invariants, and vice versa. The adjoint surface $Y$ is the rotation indicatrix for $X$, and vice versa. If $\sigma$ is a principal base for a deformation of $X$, then $Y$ is a Bianchi surface.

**How to Cite This Entry:**

Adjoint surface.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Adjoint_surface&oldid=38634

This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article