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Large deviations is concerned with the study of rare events and of small
probabilities. Let Xi, 1 ≤ i ≤ n, be independent identically distributed (i.i.d.)
real random variables with expectation m, and X̄n = (X1 + . . .Xn)/n their
empirical mean. The law of large numbers shows that, for any Borel A ⊂ R not
containing m in its closure, P (X̄n ∈ A) → 0 as n → ∞, but does not tell us
how fast the probability vanishes. Large deviations state it is exponential in n,
and give us the rate of decay. Cramér’s theorem states that,

P (X̄n ∈ A) = exp−n
(

inf{I(x);x ∈ A}+ o(1)
)

as n → ∞, for all interval A. The rate function I can be computed as the
Legendre conjugate of the logarithmic moment generating function of X ,

I(x) = sup{λx− lnE exp(λX1);λ ∈ R},

and is called the Cramér transform of the common law of the Xi’s. The natu-
ral assumption is the finiteness of the moment generating function in a neigh-
borhood of the origin, i.e., the property of exponential tails. The function
I : R → [0,+∞] is convex with I(m) = 0.
• In the Gaussian case Xi ∼ N (m,σ2), we find I(x) = (x−m)2/(2σ2);
• In the Bernoulli case P (Xi = 1) = p = 1 − P (Xi = 0), we find the entropy
function I(x) = x ln(x/p)+(1−x) ln(1−x)/(1−p) for x ∈ [0, 1], and I(x) = +∞
otherwise.

To emphasize the importance of rare events, let us mention a consequence,
the Erdös-Rényi law: consider an infinite sequenceXi, i ≥ 1, of Bernoulli i.i.d.
variables with parameter p, and define Rn the length of the longest consecutive
run, contained within the first n tosses, in which the fraction of 1’s is at least a
(a > p). Erdös and Rényi proved that, almost surely as n → ∞,

Rn/ lnn −→ I(a)−1,

with the function I from the Bernoulli case above. Though it may look para-
doxical, large deviations are at the core of this event of full probability. This
result is the basis of bioinformatics applications like sequence matching, and of
statistical tests for sequence randomness.

The theory does not only apply to independent variables, but allows for
many variations, including weakly dependent variables in a general state space,
Markov or Gaussian processes, large deviations from ergodic theorems, non-
asymptotic bounds, asymptotic expansions (Edgeworth expansions), . . . .
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Here is the formal definition. Given a Polish space (i.e., a separable com-
plete metric space) X , let {Pn} be a sequence of Borel probability measures on
X , let an be a positive sequence tending to infinity, and finally let I : X →
[0,+∞] be a lower continuous functional on X which level sets{x : I(x) ≤ a}
are compact for all a < ∞. We say that the sequence {Pn} satisfies a large
deviation principle with speed an and rate I, if for each measurable set E ⊂ X

− inf
x∈E◦

I(x) ≤ lim
n

a−1
n lnPn(E) ≤ lim

n
a−1
n lnPn(E) ≤ − inf

x∈Ē
I(x)

where Ē and E◦ denote respectively the closure and interior of E. The rate
function can be obtained as

I(x) = − lim
δց0

lim
n→∞

a−1
n lnPn(B(x, δ)),

with B(x, δ) the ball of center x and radius δ. Large deviation theory allows
for an abstract version of Laplace method for estimating integrals: Varadhan’s
lemma states that, for any continuous function F : X → R with

lim
M→∞

lim sup
n→∞

a−1
n ln

∫

F (x)≥M

eanF (x)dPn(x) = −∞

(a bounded F is fine), we have

lim
n→∞

a−1
n ln

∫

X

eanF (x)dPn(x) = sup
x
{F (x)− I(x)},

and the sequence of probability measures eanF dPn/
∫

eanFdPn concentrates on
the set of maximizers.

Sanov’s theorem and sampling with replacement: let µ be a probability
measure on a set Σ that we assume finite for simplicity, with µ(y) > 0 for all
y ∈ Σ. Let Yi, i ≥ 1, an i.i.d. sequence with law µ, and Nn the score vector of
the n-sample,

Nn(y) =

n
∑

i=1

1y(Yi).

By the law of large numbers, Nn/n → µ a.s. From the multinomial distribution,
one can check that, for all ν such that nν is a possible score vector for the n-
sample,

(n+ 1)−|Σ|e−nH(ν|µ) ≤ P (n−1Nn = ν) ≤ e−nH(ν|µ),

where H(ν|µ) =∑y∈Σ ν(y) ln ν(y)
µ(y) is the relative entropy of ν with respect to µ.

The large deviations theorem holds for the empirical distribution of a general n-
sample, with speed n and rate I(ν) = H(ν|µ) given by the natural generalization
of the above formula. This result, due to Sanov, has many consequences in
information theory and statistical mechanics [2, 5], and for exponential families
in statistics. Applications in statistics also include point estimation (by giving
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the exponential rate of convergence of M -estimators) and for hypothesis testing
(Bahadur efficiency) [7], and concentration inequalities [2].

Consider now aMarkov chain (Yn, n ≥ 0). For simplicity we assume that it
is irreducible with a finite state space Σ. We denote byQ = (Q(i, j); i, j ∈ Σ) the
transition matrix, and for any V : Σ → R, QV (i, j) = Q(i, j)eV (j). By Perron-
Frobenius theorem, n−1 ln

∑

j Q
n
V (i, j) → lnλV (Q) as n → ∞, with λV (Q)

the principal eigenvalue of the positive matrix QV . By the ergodic theorem,
Nn/n converges to the (unique) invariant law for Q. The law of the empirical
distribution Nn/n satisfes a large deviation principle with speed n and rate IQ
given by

IQ(ν) = sup
V

{
∑

j

V (j)ν(j) − lnλV (Q)}

for any law ν on Σ.

Consider next a Markov process (Yt, t ∈ R
+). We assume it is irreducible

on the finite state space Σ, and denote by a(i, j) the transition rate from i to j
(a(i, j) ≥ 0 for i 6= j,

∑

j a(i, j) = 0). Then, similarly to the time-discrete case,

the law of the empirical distribution (t−1
∫ t

0
1j(Ys)ds; j ∈ Σ) satisfes a large

deviation principle with speed t and rate Ia given by

Ia(ν) = sup
V

{
∑

j

V (j)ν(j)− λV (a)},

with λV (a) the principal eigenvalue of the matrix (a(i, j)+ δ(i, j)V (j))i,j . Now,
assume in addition that the process is reversible with respect to a probability
measure π, i.e. π(i)a(i, j) = π(j)a(j, i) for all i, j. Then, π is the invariant
measure for the process and π(i) > 0 for all i ∈ Σ. Using the variational
formula for eigenvalues of symmetric operators, Donsker and Varadhan found
that the rate function takes a simple form in the reversible case,

Ia(ν) =
1

2

∑

i,j

π(i)a(i, j)

(
√

ν(i)

π(i)
−
√

ν(j)

π(j)

)2

,

that is the value of the Dirichlet form of the reversible process on the square
root of the density of ν with respect to the invariant measure.

The Freidlin-Wentzell theory deals with diffusion processes with small
noise,

dXǫ
t = b(Xǫ

t )dt+
√
ǫ σ(Xǫ

t )dBt , Xǫ
0 = y.

The coefficients b, σ are uniformly lipshitz functions, and B is a standard Brow-
nian motion. The sequence Xǫ can be viewed as ǫ ց 0 as a small random
perturbation of the ordinary differential equation (ODE)

dxt = b(xt)dt , x0 = y.
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Indeed, Xǫ → x in the supremum norm on bounded time-intervals. Freidlin
and Wentzell have shown that, on a finite time interval [0, T ], the sequence Xǫ

with values in the path space obeys the LDP with speed ǫ−1 and rate function

I0,T (φ) =
1

2

∫ T

0

σ(φ(t))−2
(

˙φ(t) − b(φ(t))
)2

dt

if φ is absolutely continuous with square-integrable derivative and φ(0) = y;
I(φ) = ∞ otherwise. (To fit in the above formal definition, take a sequence
ǫ = ǫn ց 0, and for Pn the law of Xǫn .) Note that I(φ) = 0 if and only if
φ is a solution of the above ODE. To follow closely any other path φ during a
finite time T is an event of probability exp{−ǫ−1I0,T (φ)} at leading order, and
therefore is very rare for small ǫ.

A simple case is σ = 1 and b(x) = −V ′(x) with a smooth V ; we view V (x)
as the height of x, and a key role is played by the local minima of V . With an
overwhelming probability as ǫ ց 0, the picture will be as follows in a generic
situation. The process Xǫ will stay close to the solution of the ODE starting
from y, and will eventually come near the local minimum (say z0) which attracts
y, and stay around for times of order exp o(ǫ−1). But, by ergodicity, it will leave
the neighborhood of z0 at some time, and, even more, it will visit all points:
it is then important how these large deviations occur. Let D be domain of
attraction of z0, h be its depth (i.e., the height difference between z0 and the
lowest point on the boundary of D, that we call the lowest pass). Up to times of
order exp(ǫ−1h), the process remains in the part of D of relative height smaller
than h, and will occupy this region with density proportional to exp−(ǫ−1V (·)).
At some random time τ of order exp(ǫ−1h), it will leave D through the lowest
path, and fall down towards a new local minimum, following roughly a path of
the ODE. The piece of path just before leaving D is the time-reversed of an
ODE path. The ratio of τ to its expected value converges to an exponential
law.

The Freidlin-Wentzell theory has applications in physics (metastability phe-
nomena, analysis of rare events) and engineering (tracking loops, statistical
analysis of signals, stabilization of systems and algorithms) [6, 1, 2, 9].
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