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1. Introduction
The term ”astronomy” is best understood as short-hand for ”astronomy

and astrophysics”. Astronomy is the observational study of matter beyond
Earth: planets and other bodies in the Solar System, stars in the Milky Way
Galaxy, galaxies in the Universe, and diffuse matter between these concentra-
tions of mass. The perspective is rooted from our viewpoint on or near Earth,
typically using telescopes or robotic satellites. Astrophysics is the study of
the intrinsic nature of astronomical bodies and the processes by which they
interact and evolve. This is an inferential intellectual effort based on the
well-confirmed assumption that physical processes established to rule terrestrial
phenomena – gravity, thermodynamics, electromagnetism, quantum mechanics,
plasma physics, chemistry, and so forth – also apply to distant cosmic phenom-
ena.

Statistical techniques play an important role in analyzing astronomical data
and at the interface between astronomy and astrophysics. Astronomy encoun-
ters a huge range of statistical problems: samples selected with truncation; vari-
ables subject to censoring and heteroscedastic measurement errors; parameter
estimation of complex models derived from astrophysical theory; spatial point
processes of galaxies in space; time series of periodic, stochastic, and explosive
phenomena; image processing of both grey-scale and Poissonian images; data
mining of terabyte-petabyte datasets; and much more. Thus, astrostatistics is
not focused on a narrow suite of methods, but rather brings the insights from
many fields of statistics to bear on problems arising in astronomical research.

2. History
As the oldest observational science, astronomy was the driver for statisti-

cal innovations over many centuries (Stigler 1986; Hald 1998). Hipparchus,
Ptolemy, al-Biruni, and Galileo Galilei were among those who discussed methods
for averaging discrepant astronomical measurements. The least squares method,
and its understanding in the context of the normal error distribution, was devel-
oped to address problems in Newtonian celestial mechanics during the early 19th
century by Pierre-Simon Laplace, Adrian Legendre, and Carl Friedrich Gauss.
The links between astronomy and statistics considerably weakened during the
first decades of the 20th century as statistics turned its attention social and bi-
ological sciences while astronomy focused on astrophysics. Maximum likelihood
methods emerged slowly starting in the 1970s, and Bayesian methods are now
gaining considerably popularity.

Modern astrostatistics has grown rapidly since the 1990s. Several cross-
disciplinary research groups emerged to develop advanced methods and critique
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common practices1. Monographs were written on astrostatistics (Babu & Feigel-
son (1996), galaxy clustering (Martinez & Saar 2001), image processing (Starck
& Murtagh 2006), Bayesian analysis (Gregory 2005), and Bayesian cosmology
(Hobson et al. 2009). The Statistical Challenges in Modern Astronomy (Babu
& Feigelson 2007) conferences bring astronomers and statisticians together to
discuss methodological issues.

The astronomical community is devoting considerable resources to the con-
struction and promulgation of large archival datasets, often based on well-
designed surveys of large areas of the sky. These datasets have terabytes to
petabytes of images, spectra and time series. Reduced data products include
tabular data with ∼ 10 variables measured for billions of astronomical objects.
Major projects include the Sloan Digital Sky Survey, International Virtual Ob-
servatory, and planned Large Synoptic Survey Telescope2. Too large for tra-
ditional treatments, these datasets are spawning increased interest in compu-
tationally efficient data visualization, data mining, and statistical analysis. A
nascent field of astroinformatics allied to astrostatistics is emerging.

3. Topics in contemporary astrostatistics
Given the vast range of astrostatistics, only a very small portion of relevant

issues can be presented here. We outline three topics of contemporary interest.

Heteroscedastic measurement errors

Astronomical measurements at telescopes are made with carefully designed
and calibrated instruments, and ‘background’ levels in dark areas of the sky are
examined to quantitatively determine the noise levels. Thus, unlike in social
and biological science studies, heteroscedastic measurement error are directly
obtained for each astronomical measurement. This produces unusual dataset
structures. For example, a multivariate table of brightness of quasars in 6 pho-
tometric bands will have 12 columns of numbers giving the measured brightness
and the associated measurement error in each band.

Unfortunately, few statistical techniques are available for this class of non-
identically distributed data. Most errors-in-variables methods are designed to
treat situations where the heteroscedasticity is not measured, and instead be-
comes part of the statistical model (Carroll et al. 2006). Methods are needed
for density estimation, regression, multivariate analysis and classification, spa-
tial processes, and time series analysis. Common estimation procedures in the
astronomical literature weight each measurement by its associated error. For
instance, in a functional regression model, the parameters θ̂ in model M are esti-
mated by minimizing the weighted sum of squared residuals

∑
i
(Oi−Mi(θ̂)

2/σ2

i

of the observed data Oi where σ2

i
are the known variances of the measurement

errors.
More sophisticated methods are being developed, but have not yet entered

1http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org;
http://astrostatistics.psu.edu

2http://www.sdss.org, http://www.ivoa.net, http://www.lsst.org
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into common usage. Kelly (2007)3 treats structural regression as an extension
of a normal mixture model, writing a likelihood which can either be maximized
with the EM Algorithm or used in Bayes’ theorem. The Bayesian approach is
more powerful, as it also can simultaneous incorporate censoring and truncation
into the measurement error model. Delaigle & Meister (2008) describe a non-
parametric kernel density estimator that takes into account the heteroscedastic
errors. More methods (e.g., for multivariate clustering and time series model-
ing) are needed.

Censoring and truncation

In the telescopic measurement of quasar brightnesses outlined above, some
targeted quasars may be too faint to be seen above the background noise level
in some photometric bands. These nondetections lead to censored data points.
The situation is similar in some ways to censoring treated by standard survival
analysis, but differs in other ways: the data are left-censored rather than right-
censored; censoring can occur in any variable, not just a single response variable;
and censoring levels are linked to measurement error levels. Survival techniques
have come into common usage in astronomy since their introduction (Isobe et al.
1986). They treat some problems such as density estimation (with the Kaplan-
Meier product-limit estimator), two-sample tests (such as the Gehan, logrank
and Peto-Prentice tests), correlation (using a generalization of Kendall’s τ), and
linear regression (using the Buckley-James line).

Consider a survey of quasars at a telescope with limited sensitivity where the
quasar sample is not provided in advance, but is derived from the photometric
colors of objects in the survey. Now quasars which are too faint for detection are
missing entirely from the dataset. Recovery from this form of truncation is more
difficult than recovery from censoring with a previously established sample. A
major advance was the derivation of the nonparametric estimator for a ran-
domly truncated dataset, analogous to the Kaplan-Meier estimator for censored
data, by astrophysicist Lynden-Bell (1971). This solution was later recovered
by statistician Woodroofe (1985), and bivariate extensions were developed by
Efron & Petrosian (1992).

Periodicity detection in difficult data

Stars exhibit a variety of periodic behaviors: binary star or planetary or-
bits; stellar rotation; and stellar oscillations. While Fourier analysis is often
used to find and characterize such periodicities, the data often present problems
such as non-sinusoidal repeating patterns, observations of limited duration, and
unevenly-spaced observations. Non-sinusoidal periodicities occur in elliptical
orbits, eclipses, and rotational modulation of surface features. Unevenly-spaced
data arise from bad weather at the telescope, diurnal cycles for ground-based
telescopes, Earth orbit cycles for satellite observatories, and inadequate observ-
ing time provided by telescope allocation committees.

3The astronomical research literature can be accessed online through the SAO/NASA
Astrophysics Data System, http://adsabs.harvard.edu.
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Astronomers have developed a number of statistics to locate periodicities un-
der these conditions. Stellingwerf (1972) presents a widely used least-squared
technique where the data are folded modulo trial periods, grouped into phase
bins, and intra-bin variance is compared to inter-bin variance using χ2. The
method treats unevenly spaced data, measurement errors, and non-sinusoidal
shapes. Dworetsky (1983) gives a similar method without binning suitable for
sparse datasets. Gregory & Loredo (1992) develop a Bayesian approach for lo-
cating non-sinusoidal periodic behaviors from Poisson distributed event data.
Research is now concentrating on methods for computationally efficient discov-
ery of planets orbiting stars as they eclipse a small fraction during repeated tran-
sits across the stellar surface. These methods involve matched filters, Bayesian
estimation, least-squares box-fitting, maximum likelihood, analysis of variance,
and other approaches (e.g. Pontopappas et al. 2005).
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