Namespaces
Variants
Actions

Zariski theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


on connectivity, Zariski connectedness theorem

Let $ f : X \rightarrow Y $ be a proper surjective morphism of irreducible varieties, let the field of rational functions $ k ( Y ) $ be separably algebraically closed in $ k ( X ) $ and let $ y \in Y $ be a normal point; then $ f ^ { - 1 } ( y ) $ is connected (moreover, geometrically connected) (see [2]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected.

A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties $ f : X \rightarrow Y $ is an open imbedding into a neighbourhood of a normal point $ y \in Y $ if $ f ^ { - 1 } ( y ) $ is a finite set (see [1]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let $ f : X \rightarrow Y $ be a quasi-finite separable morphism of schemes, and let $ Y $ be a quasi-compact quasi-separable scheme; then there exists a decomposition $ f = u \circ g $, where $ u $ is a finite morphism and $ g $ an open imbedding .

References

[1] O. Zariski, "Foundations of a general theory of birational correspondences" Trans. Amer. Math. Soc. , 53 : 3 (1943) pp. 490–542 MR0008468 Zbl 0061.33004
[2] O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" Mem. Amer. Math. Soc. , 5 (1951) pp. 1–90 MR0041487
[3a] A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" Publ. Math. IHES , 11 (1961) MR0217085 MR0163910
[3b] A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" Publ. Math. IHES , 32 (1967) MR0238860 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901

Comments

In case $ f: X \rightarrow Y $ is a proper birational morphism and $ y \in Y $ is a non-singular point, $ f ^ { - 1 } ( y) $ is moreover linearly connected, i.e. any two points of $ f ^ { - 1 } ( y) $ can be connected by a sequence of rational curves in $ f ^ { - 1 } ( y) $( see [a2][a4]).

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001
[a2] O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , Algebraic geometry and topology (Symp. in honor of S. Lefschetz) , Princeton Univ. Press (1957) pp. 182–188 MR0090099 Zbl 0087.35601
[a3] J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" Amer. J. Math. , 80 (1958) pp. 3–15 MR0093524 Zbl 0087.35602
[a4] W.-L. Chow, "On the connectedness theorem in algebraic geometry" Amer. J. Math. , 83 (1959) pp. 1033–1074 MR0110705 Zbl 0192.26806
How to Cite This Entry:
Zariski theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zariski_theorem&oldid=49245
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article