Namespaces
Variants
Actions

Difference between revisions of "Wick product"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
m (correction)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
''Wick monomial, Wick power''
 
''Wick monomial, Wick power''
  
Line 51: Line 53:
 
h_n(x) = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } x^{n-2m}
 
h_n(x) = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } x^{n-2m}
 
$$
 
$$
are the [[Hermite polynomials]] with leading coefficient $1$ and $||f||^2 = \langle g \rangle^2$. Further,
+
are the [[Hermite polynomials]] with leading coefficient $1$ and $||f||^2 = \langle f^2 \rangle$. Further,
 
$$
 
$$
 
\langle :f:^m :g:^m \rangle = \delta_{mn} n! \langle fg \rangle^n \ .
 
\langle :f:^m :g:^m \rangle = \delta_{mn} n! \langle fg \rangle^n \ .
Line 63: Line 65:
  
 
If there are two measures $\mu$ and $\nu$ with respect to which $f$ is Gaussian of mean zero, then
 
If there are two measures $\mu$ and $\nu$ with respect to which $f$ is Gaussian of mean zero, then
 +
$$
 +
:\exp(a f) :_\mu = :\exp af :_\nu \exp\left( { \frac{a^2}{2}\langle f^2 \rangle_\mu - \langle f^2 \rangle_\nu } \right) \ .
 +
$$
 +
 +
Let $f_1,\ldots,f_n$ be jointly Gaussian variables with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial $:f_1\cdots f_n:$, as follows:
 +
$$
 +
:f_1\cdots f_n: = \sum_G \prod_{e \in G} -\left\langle { f_{e_1} f_{e_2} } \right\rangle \prod_{i \not\in [G]} f_i \ .
 +
$$
 +
 +
Here, $G$ runs over all pairings of $\{1,\ldots,n\}$ (sometimes called graphs), i.e. all sets of disjoint unordered pairs of $\{1,\ldots,n\}$, $[G]$ is the union of the unordered pairs making up $G$, and if $e$ is an unordered pair, then $\{e_1,e_2\}$ is the set of vertices making up that pair.
 +
 +
For instance,
 +
$$
 +
:fg^2: = fg^2 - 2\langle fg \rangle - \langle g^2 \rangle f \ ,
 +
$$
 +
$$
 +
:f^2g^2: = f^2g^2 - \langle f^2 \rangle g^2 - \langle g^2 \rangle f^2 - 4 \langle fg \rangle fg + 2\langle fg \rangle^2 + \langle f \rangle^2 \langle g \rangle^2 \ .
 +
$$
 +
 +
Let $\{ I_\nu \}$, $\nu = 1,\ldots,n$, be a collection of disjoint finite sets. A line on $\{ I_\nu \}$ is by definition a pair of elements taken from different $I_\nu$. A graph on $\{ I_\nu \}$ is a set of disjoint lines on $\{ I_\nu \}$. If each $I_\nu$ is seen as a vertex with $|I_\nu|$  "legs"  emanating from it, then $G$ can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram.
 +
 +
The case of  "pairings"  which occurred above corresponds to a graph on $\{ I_\nu \}$ where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
Let  $  I _ \nu  $,
 +
$  \nu = 1 \dots n $,
 +
be a collection of disjoint finite sets,  $  I = \cup _ \nu  I _ \nu  $,
 +
and  $  f _{i} $
 +
a collection of jointly Gaussian random variables indexed by  $  I $.  
 +
Then
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787032.png" /> be jointly Gaussian variabless with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787033.png" />, as follows:
+
$$ \tag{a6}
 +
\prod _ \nu  : \prod _ {i \in I _ \nu} f _{i} :\  = \
 +
\sum _{G} \prod _ {e \in G} < f _{ {e _ 1}} f _{ {e _ 2}} > : \prod _ {i \notin [G]} f _{i} : ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
 
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787035.png" /> runs over all pairings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787036.png" /> (sometimes called graphs), i.e. all sets of disjoint unordered pairs of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787038.png" /> is the union of the unordered pairs making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787039.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787040.png" /> is an unordered pair, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787041.png" /> is the set of vertices making up that pair.
+
where  $  G $
 +
runs over all graphs on  $  \{ I _ \nu  \} $
 +
and  $  [G] $
 +
is the union of all the disjoint unordered pairs making up $  G $.  
 +
More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [[#References|[a4]]].
  
For instance,
+
For the expection of a product of Wick monomials one has
 +
 
 +
$$ \tag{a7}
 +
\left \langle  \prod _ \nu  : \prod _ {i \in I _ \nu} f _{i} : \right \rangle \  = \
 +
\sum _ {G \in \Gamma _{0} ( \{ I _ \nu  \} )} \
 +
\prod _ {e \in G} \langle  f _{ {e _ 1}} f _{ {e _ 2}} \rangle
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787042.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787043.png" /></td> </tr></table>
+
and, in particular,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787044.png" /></td> </tr></table>
+
$$ \tag{a8}
 +
\langle  f _{1} \dots f _{n} \rangle \  = \  \left \{
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787046.png" />, be a collection of disjoint finite sets. A line on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787047.png" /> is by definition a pair of elements taken from different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787048.png" />. A graph on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787049.png" /> is a set of disjoint lines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787050.png" />. If each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787051.png" /> is seen as a vertex with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787052.png" /> "legs" emanating from it, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787053.png" /> can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram.
+
\begin{array}{ll}
 +
0 &\textrm{ if } \  n \  \textrm{ is } \ \textrm{ odd } , \\
 +
\sum _ {G \in \Gamma _{0} (n)} \
 +
\prod _ {e \in G} \langle  f _{ {e _ 1}} f _{ {e _ 2}} \rangle  &\  \textrm{ if } \
 +
n=2k , \\
 +
\end{array}
  
The case of "pairings"  which occured above corresponds to a graph on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787054.png" /> where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows.
+
  \right .$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787056.png" />, be a collection of disjoint finite sets, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787057.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787058.png" /> a collection of jointly Gaussian random variables indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787059.png" />. Then
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
where  $  \Gamma _{0} (2k) $
 +
runs over all  $  (2k)! 2 ^{-k} (k!) ^{-1} $
 +
ways of splitting up  $  \{ 1 \dots 2k \} $
 +
into  $  k $
 +
unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787061.png" /> runs over all graphs on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787063.png" /> is the union of all the disjoint unordered pairs making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787064.png" />. More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [[#References|[a4]]].
+
In the setting of (Euclidean) quantum field theory, let  $  {\mathcal S} ( \mathbf R ^{n} ) $
 +
be the Schwartz space of rapidly-decreasing smooth functions and let  $  {\mathcal S} ^ \prime  ( \mathbf R ^{n} ) $
 +
be the space of real-valued tempered distributions. For  $  f \in {\mathcal S} ( \mathbf R ^{n} ) $,
 +
let  $  \phi (f \  ) $
 +
be the linear function on  $  {\mathcal S} ^ \prime  ( \mathbf R ^{n} ) $
 +
given by  $  \phi (f \  )(u) = u(f \  ) $.  
 +
Then for any continuous positive scalar product  $  C $
 +
on  $  {\mathcal S} ( \mathbf R ^{n} ) \times {\mathcal S} ( \mathbf R ^{n} ) $,
 +
$  (f,\  g) \mapsto \langle f,\  Cg\rangle $,  
 +
there is a unique countably-additive Gaussian measure  $  d q _{C} $
 +
on  $  {\mathcal S} ^ \prime  ( \mathbf R ^{n} ) $
 +
such that
  
For the expection of a product of Wick monomials one has
+
$$
 +
\int\limits e ^ {\  i \phi (f \  )} \  dq _{C} \  = \
 +
\mathop{\rm exp}\nolimits \left ( -
 +
\frac{1}{2}
 +
\langle  f ,\  C f \  \rangle \right ) ,\ \
 +
f \in {\mathcal S} ( \mathbf R ^{n} ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
 
  
and, in particular,
+
Then  $  \phi (f \  ) \in L _{p} ( {\mathcal S} ^ \prime  ( \mathbf R ^{n} ) ,\  d q _{C} ) $
 +
for all  $  p \in [1,\  \infty ) $
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
+
$$
 +
\int\limits \phi (f \  ) \  dq _{C} \  = 0 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787067.png" /> runs over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787068.png" /> ways of splitting up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787069.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787070.png" /> unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem.
 
  
In the setting of (Euclidean) quantum field theory, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787071.png" /> be the Schwartz space of rapidly-decreasing smooth functions and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787072.png" /> be the space of real-valued tempered distributions. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787073.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787074.png" /> be the linear function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787075.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787076.png" />. Then for any continuous positive scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787077.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787079.png" />, there is a unique countably-additive Gaussian measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787080.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787081.png" /> such that
+
$$
 +
\int\limits \phi (f _{1} ) \phi (f _{2} ) \  d q _{C} \  = \  \langle  f _{1} ,\  Cf _{2} \rangle .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787082.png" /></td> </tr></table>
 
  
Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787083.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787084.png" /> and
+
So  $  \langle  \phi (f _{1} ) \phi (f _{2} ) \rangle = \langle  f _{1} ,\  Cf _{2} \rangle $,
 +
and some of the formulas of Wick monomials, etc., now take the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787085.png" /></td> </tr></table>
+
$$ \tag{a3\prime}
 +
: \phi (f \  ) ^{n} :=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787086.png" /></td> </tr></table>
 
  
So <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787087.png" />, and some of the formulas of Wick monomials, etc., now take the form
+
$$
 +
= \
 +
\sum _{j}
 +
\frac{n!}{(n-2j)! j! 2 ^ j}
 +
(-1)
 +
^{j} \langle f,\  Cf \  \rangle ^{j} \phi (f \  ) ^{n-2j\ } =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787088.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3prm)</td></tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787089.png" /></td> </tr></table>
+
$$
 +
= \
 +
\langle f,\  Cf \  \rangle ^{n/2} h _{n} \left (
 +
\frac{\phi (f \  )}{\langle  f,\  Cf \  \rangle ^ 1/2}
 +
\right ) ,
 +
$$
 +
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787090.png" /></td> </tr></table>
+
$$ \tag{a5\prime}
 +
: \prod _ {\nu =1} ^ n \phi (f _ \nu  ) : \  = \  \sum
 +
_{G} \prod _ {e \in G} < f _{ {e _ 1}} ,\  - Cf
 +
_{ {e _ 2}} > \prod _ {i \notin [G]} \phi (f _{i} ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787091.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5prm)</td></tr></table>
 
  
 
Wick monomials have much to do with the [[Fock space|Fock space]] via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations.
 
Wick monomials have much to do with the [[Fock space|Fock space]] via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787092.png" /> be a pre-Hilbert space. A representation of the canonical commutation relations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787093.png" /> is a pair of linear mappings
+
Let $  {\mathcal S} $
 +
be a pre-Hilbert space. A representation of the canonical commutation relations over $  {\mathcal S} $
 +
is a pair of linear mappings
 +
 
 +
$$
 +
f \  \mapsto \  a(f \  ) ,\ \  g \  \mapsto \  a ^{*} (g)
 +
$$
 +
 
 +
 
 +
from  $  {\mathcal S} $
 +
to operators  $  a(f \  ) $,
 +
$  a ^{*} (g) $
 +
defined on a dense domain  $  D $
 +
in a complex Hilbert space  $  H $
 +
such that
 +
 
 +
$$
 +
a(f \  ) D \  \subset \  D ,\ \  a ^{*} (g) D \  \subset \  D ,
 +
$$
 +
 
 +
 
 +
$$
 +
\langle  x _{1} ,\  a (f \  )x _{2} \rangle \  = \  \langle  a ^{*} (f \  )x _{1} ,\  x _{2} \rangle ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787094.png" /></td> </tr></table>
 
  
from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787095.png" /> to operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787097.png" /> defined on a dense domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787098.png" /> in a complex Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787099.png" /> such that
+
$$
 +
[a(f \  ),\  a(g)] \  = \  [a ^{*} (f \  ),\  a ^{*} (g)] \  = 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870100.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870101.png" /></td> </tr></table>
+
$$
 +
[a(f \  ),\  a ^{*} (g)] x \  = \  \langle  f,\  g\rangle x ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870102.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870103.png" /></td> </tr></table>
+
for all  $  x,\  x _{1} ,\  x _{2} \in D $,
 +
$  f ,\  g \in {\mathcal S} $.  
 +
The representation is called a Fock representation if there is moreover an  $  \Omega \in D $,
 +
called the vacuum vector, such that
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870105.png" />. The representation is called a Fock representation if there is moreover an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870106.png" />, called the vacuum vector, such that
+
$$
 +
a(f \  ) \Omega \  = 0 ,\ \  f \in {\mathcal S} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870107.png" /></td> </tr></table>
 
  
and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870108.png" /> is the linear space span of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870110.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870111.png" />. There is an existence theorem (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) and the uniqueness theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870112.png" /> are two Fock representations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870113.png" /> with vacuum vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870114.png" />, then they are unitarily equivalent and the unitary equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870115.png" /> is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870116.png" />.
+
and such that $  D $
 +
is the linear space span of the vectors $  a ^{*} (g _{1} ) \dots a ^{*} (g _{k} ) \Omega $,
 +
$  g _{i} \in {\mathcal S} $,
 +
$  k = 0,\  1,\dots $.  
 +
There is an existence theorem (cf. [[Fock space|Fock space]] and [[Commutation and anti-commutation relationships, representation of|Commutation and anti-commutation relationships, representation of]]) and the uniqueness theorem: If $  (a _{i} ,\  a _{i} ^{*} ) $
 +
are two Fock representations over $  {\mathcal S} $
 +
with vacuum vectors $  \Omega _{i} $,  
 +
then they are unitarily equivalent and the unitary equivalence $  U $
 +
is uniquely determined by $  U \Omega _{1} = \Omega _{2} $.
  
A standard Gaussian function on a real Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870117.png" /> (called a Gaussian random process indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870118.png" /> in [[#References|[a3]]]) is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870119.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870120.png" /> to the random variables on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870121.png" /> such that (almost everywhere)
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870122.png" /></td> </tr></table>
+
A standard Gaussian function on a real Hilbert space  $  V $(
 +
called a Gaussian random process indexed by  $  V $
 +
in [[#References|[a3]]]) is a mapping  $  \phi $
 +
from  $  V $
 +
to the random variables on a probability space  $  (X ,\  {\mathcal B} ,\  \mu ) $
 +
such that (almost everywhere)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870123.png" /></td> </tr></table>
+
$$
 +
\phi (v+w) \  = \  \phi (v)+ \phi (w) ,\ \  v,\  w \in V ,
 +
$$
  
such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870124.png" />-algebra generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870125.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870126.png" /> (up to the sets of measure zero) and such that
 
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870127.png" /> is a Gaussian random variable of mean zero, and
+
$$
 +
\phi ( \alpha v ) \  = \  \alpha \phi ( v) ,\ \  \alpha \in \mathbf R ,\ \  v \in V ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870128.png" />.
 
  
For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870129.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870130.png" /> on probability spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870132.png" /> are equivalent in the sense that there is an isomorphism of the two probability spaces under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870134.png" /> correspond for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870135.png" /> (cf. [[#References|[a1]]], §4, [[#References|[a3]]], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions.
+
such that the $  \sigma $-
 +
algebra generated by the $  \phi (f \  ) $
 +
is $  {\mathcal B} $(
 +
up to the sets of measure zero) and such that
  
Identifying the symmetric Fock space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870136.png" /> with the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870137.png" /> realizing the standard Gaussian function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870138.png" />, the Wick products of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870139.png" /> are obtained by taking the usual products and then applying the orthogonal projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870140.png" /> onto its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870141.png" />-particle subspace.
+
$  \phi (v) $
 +
is a Gaussian random variable of mean zero, and
  
In the case of one Gaussian variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870142.png" /> with probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870143.png" />, the above works out as follows:
+
$  \langle  \phi (v) \phi (w)\rangle = \langle  v,\  w\rangle $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870144.png" /></td> </tr></table>
 
  
A Fock representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870145.png" /> is
+
For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions  $  \phi $
 +
and  $  \phi ^ \prime  $
 +
on probability spaces  $  (X,\  {\mathcal B} , \mu ) $,
 +
$  (X ^ \prime  ,\  {\mathcal B} ^ \prime  , \mu ^ \prime  ) $
 +
are equivalent in the sense that there is an isomorphism of the two probability spaces under which  $  \phi (v) $
 +
and  $  \phi ^ \prime  (v) $
 +
correspond for all  $  v \in V $(
 +
cf. [[#References|[a1]]], §4, [[#References|[a3]]], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870146.png" /></td> </tr></table>
+
Identifying the symmetric Fock space  $  F(V) $
 +
with the space  $  L _{2} (X,\  {\mathcal B} ,\  \mu ) $
 +
realizing the standard Gaussian function on  $  H $,
 +
the Wick products of the  $  \phi (v) $
 +
are obtained by taking the usual products and then applying the orthogonal projection of  $  F(V) $
 +
onto its  $  n $-
 +
particle subspace.
  
and, indeed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870147.png" />, which fits because the creation operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870148.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870149.png" />. In terms of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870150.png" />,
+
In the case of one Gaussian variable $  x $
 +
with probability measure  $  \pi ^ {- 1/2} e ^ {- x ^{2} /2} \  dx $,  
 +
the above works out as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870151.png" /></td> </tr></table>
+
$$
 +
: x ^{n} :\  = \  h _{n} (x).
 +
$$
 +
 
 +
 
 +
A Fock representation in  $  L _{2} ( \mathbf R ,\  (2 \pi ) ^ {- 1/2} e ^ {- x ^{2} /2} \  dx ) $
 +
is
 +
 
 +
$$
 +
\Omega \  = \  1 ,\ \
 +
a \  =
 +
\frac{d}{dx}
 +
,\ \
 +
a ^{*} \  = \  x -  
 +
\frac{d}{dx}
 +
,
 +
$$
 +
 
 +
 
 +
and, indeed,  $  h _{n} (x) = (x- d / dx ) ^{n} (1) $,
 +
which fits because the creation operator on  $  F ( \mathbf R ) $
 +
is  $  a ^{*} (e ^ {\otimes n} ) = e ^ {\otimes (n+1)} $.
 +
In terms of the variable  $  y = x / \sqrt 2 $,
 +
 
 +
 
 +
$$
 +
\Omega \  = \  1,\ \
 +
a \  = \ 
 +
\frac{1}{\sqrt 2}
 +
 +
\frac{d}{dy}
 +
,\ \
 +
a ^{*} \  = \  \sqrt 2 y -
 +
\frac{1}{\sqrt 2}
 +
 +
\frac{d}{dy}
 +
,
 +
$$
 +
 
 +
 
 +
$$
 +
y \  = \ 
 +
\frac{1}{\sqrt 2}
 +
(a + a ^{*} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870152.png" /></td> </tr></table>
 
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870153.png" /></td> </tr></table>
+
$$
 +
: y ^{n} := \  ( \sqrt 2 ) ^{-n} h _{n} ( \sqrt 2 y ) \  = \  ( \sqrt 2 ) ^{-n} \sum _{k=0} ^ n
 +
\binom{n}{k} a ^{*k} a ^{n-k} ,
 +
$$
  
where in the  "binomial expansion of creation and annihilation operatorsbinomial expansion"  of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870154.png" /> on the right-hand side the annihilation operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870155.png" /> all come before the creation operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w097870156.png" /> (Wick ordening). Suitably interpreted, the same formula holds in general, [[#References|[a3]]], p. 24.
+
 
 +
where in the  "binomial expansion of creation and annihilation operatorsbinomial expansion"  of $  ( (a+a ^{*} ) / \sqrt 2 ) ^{n} $
 +
on the right-hand side the annihilation operators $  a $
 +
all come before the creation operators $  a ^{*} $(
 +
Wick ordening). Suitably interpreted, the same formula holds in general, [[#References|[a3]]], p. 24.
  
 
====References====
 
====References====
Line 185: Line 380:
 
<TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Glimm,  A. Jaffe,  "Quantum physics, a functional integral point of view" , Springer  (1981)</TD></TR>
 
<TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Glimm,  A. Jaffe,  "Quantum physics, a functional integral point of view" , Springer  (1981)</TD></TR>
 
</table>
 
</table>
 
{{TEX|part}}
 

Latest revision as of 18:50, 11 December 2020


Wick monomial, Wick power

The Wick products of random variables arise through an orthogonalization procedure.

Let $f_1,\ldots,f_n$ be (real-valued) random variables on some probability space $(\Omega,\mathcal{B},\mu)$. The Wick product $$ :f_1^{k_1}\cdots f_n^{k_n}: $$ is defined recursively as a polynomial in $f_1,\ldots,f_n$ of total degree $k_1+\cdots+k_n$ satisfying $$ \left\langle { :f_1^{k_1}\cdots f_n^{k_n}: } \right\rangle = 0 $$ and for $k_i \ge 1$, $$ \frac{\partial}{\partial f_i} \left( { :f_1^{k_1}\cdots f_n^{k_n}: } \right) = k_i :f_1^{k_1}\cdots f_i^{k_i-1} \cdots f_n^{k_n}: $$ where $\langle {\cdot} \rangle$ denotes expectation. The $:\,:$ notation is traditional in physics.

For example, $$ :f: = f - \langle f \rangle \ , $$ $$ :f^2: = f^2 - 2\langle f \rangle f - \langle f^2 \rangle + 2\langle f \rangle^2 \ . $$

There is a binomial theorem: $$ :(af+bg)^n: = \sum_{m=0}^n \binom{n}{m} a^m b^{n-m} :f^m: :g^{n-m}: $$ and a corresponding multinomial theorem. The Wick exponential is defined as $$ :\exp(a f): = \sum_{m=0}^\infty \frac{a^m}{m!} :f^m: $$ so that $$ :\exp(af): = \langle \exp(af) \rangle^{-1} \exp(af) \ . $$

The Wick products, powers and exponentials depend both on the variables involved and on the underlying measure.

Let $f,g$ be Gaussian random variables with mean zero. Then $$ :\exp(af): = \exp\left({ af - \frac12 a^2 \langle f^2 \rangle }\right) $$ $$ :f^n: = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } f^{n-2m} ||f||^{2m} = ||f||^n h_n(||f||^{-1}f) $$ where the $$ h_n(x) = \sum_m (-1)^m \frac{ n! }{ m!(n-2m)! 2^m } x^{n-2m} $$ are the Hermite polynomials with leading coefficient $1$ and $||f||^2 = \langle f^2 \rangle$. Further, $$ \langle :f:^m :g:^m \rangle = \delta_{mn} n! \langle fg \rangle^n \ . $$

This follows from $$ :\exp(af):\,:\exp(bg): = \exp(af+bg) \exp\left( { \frac{-1}{2} (a^2 \langle f^2 \rangle + b^2 \langle g^2 \rangle) } \right) \ , $$ a formula that contains a great deal of the combinatorics of Wick monomials.

If there are two measures $\mu$ and $\nu$ with respect to which $f$ is Gaussian of mean zero, then $$ :\exp(a f) :_\mu = :\exp af :_\nu \exp\left( { \frac{a^2}{2}\langle f^2 \rangle_\mu - \langle f^2 \rangle_\nu } \right) \ . $$

Let $f_1,\ldots,f_n$ be jointly Gaussian variables with mean zero (not necessarily distinct). Then there is an explicit formula for the Wick monomial $:f_1\cdots f_n:$, as follows: $$ :f_1\cdots f_n: = \sum_G \prod_{e \in G} -\left\langle { f_{e_1} f_{e_2} } \right\rangle \prod_{i \not\in [G]} f_i \ . $$

Here, $G$ runs over all pairings of $\{1,\ldots,n\}$ (sometimes called graphs), i.e. all sets of disjoint unordered pairs of $\{1,\ldots,n\}$, $[G]$ is the union of the unordered pairs making up $G$, and if $e$ is an unordered pair, then $\{e_1,e_2\}$ is the set of vertices making up that pair.

For instance, $$ :fg^2: = fg^2 - 2\langle fg \rangle - \langle g^2 \rangle f \ , $$ $$ :f^2g^2: = f^2g^2 - \langle f^2 \rangle g^2 - \langle g^2 \rangle f^2 - 4 \langle fg \rangle fg + 2\langle fg \rangle^2 + \langle f \rangle^2 \langle g \rangle^2 \ . $$

Let $\{ I_\nu \}$, $\nu = 1,\ldots,n$, be a collection of disjoint finite sets. A line on $\{ I_\nu \}$ is by definition a pair of elements taken from different $I_\nu$. A graph on $\{ I_\nu \}$ is a set of disjoint lines on $\{ I_\nu \}$. If each $I_\nu$ is seen as a vertex with $|I_\nu|$ "legs" emanating from it, then $G$ can be visualized as a set of lines joining legs from different vertices. A graph such that all legs are joined is a (certain special kind of) fully contracted graph, vacuum graph, Feynman graph, or Feynman diagram.

The case of "pairings" which occurred above corresponds to a graph on $\{ I_\nu \}$ where each vertex has precisely one leg. In terms of these Feynman diagrams a product of Wick monomials is expressed as a linear combination of Wick monomials as follows.

Let $ I _ \nu $, $ \nu = 1 \dots n $, be a collection of disjoint finite sets, $ I = \cup _ \nu I _ \nu $, and $ f _{i} $ a collection of jointly Gaussian random variables indexed by $ I $. Then

$$ \tag{a6} \prod _ \nu : \prod _ {i \in I _ \nu} f _{i} :\ = \ \sum _{G} \prod _ {e \in G} < f _{ {e _ 1}} f _{ {e _ 2}} > : \prod _ {i \notin [G]} f _{i} : , $$


where $ G $ runs over all graphs on $ \{ I _ \nu \} $ and $ [G] $ is the union of all the disjoint unordered pairs making up $ G $. More general Feynman graphs, such as graphs with also self-interaction lines, occur when several different covariances are involved, cf. [a4].

For the expection of a product of Wick monomials one has

$$ \tag{a7} \left \langle \prod _ \nu : \prod _ {i \in I _ \nu} f _{i} : \right \rangle \ = \ \sum _ {G \in \Gamma _{0} ( \{ I _ \nu \} )} \ \prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle $$


and, in particular,

$$ \tag{a8} \langle f _{1} \dots f _{n} \rangle \ = \ \left \{ \begin{array}{ll} 0 &\textrm{ if } \ n \ \textrm{ is } \ \textrm{ odd } , \\ \sum _ {G \in \Gamma _{0} (n)} \ \prod _ {e \in G} \langle f _{ {e _ 1}} f _{ {e _ 2}} \rangle &\ \textrm{ if } \ n=2k , \\ \end{array} \right .$$


where $ \Gamma _{0} (2k) $ runs over all $ (2k)! 2 ^{-k} (k!) ^{-1} $ ways of splitting up $ \{ 1 \dots 2k \} $ into $ k $ unordered pairs. All of the formulas (a1)–(a4), (a7), (a8), especially (a8), generally go by the name Wick's formula or Wick's theorem.

In the setting of (Euclidean) quantum field theory, let $ {\mathcal S} ( \mathbf R ^{n} ) $ be the Schwartz space of rapidly-decreasing smooth functions and let $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ be the space of real-valued tempered distributions. For $ f \in {\mathcal S} ( \mathbf R ^{n} ) $, let $ \phi (f \ ) $ be the linear function on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ given by $ \phi (f \ )(u) = u(f \ ) $. Then for any continuous positive scalar product $ C $ on $ {\mathcal S} ( \mathbf R ^{n} ) \times {\mathcal S} ( \mathbf R ^{n} ) $, $ (f,\ g) \mapsto \langle f,\ Cg\rangle $, there is a unique countably-additive Gaussian measure $ d q _{C} $ on $ {\mathcal S} ^ \prime ( \mathbf R ^{n} ) $ such that

$$ \int\limits e ^ {\ i \phi (f \ )} \ dq _{C} \ = \ \mathop{\rm exp}\nolimits \left ( - \frac{1}{2} \langle f ,\ C f \ \rangle \right ) ,\ \ f \in {\mathcal S} ( \mathbf R ^{n} ) . $$


Then $ \phi (f \ ) \in L _{p} ( {\mathcal S} ^ \prime ( \mathbf R ^{n} ) ,\ d q _{C} ) $ for all $ p \in [1,\ \infty ) $ and

$$ \int\limits \phi (f \ ) \ dq _{C} \ = \ 0 , $$


$$ \int\limits \phi (f _{1} ) \phi (f _{2} ) \ d q _{C} \ = \ \langle f _{1} ,\ Cf _{2} \rangle . $$


So $ \langle \phi (f _{1} ) \phi (f _{2} ) \rangle = \langle f _{1} ,\ Cf _{2} \rangle $, and some of the formulas of Wick monomials, etc., now take the form

$$ \tag{a3\prime} : \phi (f \ ) ^{n} :\ = $$


$$ = \ \sum _{j} \frac{n!}{(n-2j)! j! 2 ^ j} (-1) ^{j} \langle f,\ Cf \ \rangle ^{j} \phi (f \ ) ^{n-2j\ } = $$


$$ = \ \langle f,\ Cf \ \rangle ^{n/2} h _{n} \left ( \frac{\phi (f \ )}{\langle f,\ Cf \ \rangle ^ 1/2} \right ) , $$


$$ \tag{a5\prime} : \prod _ {\nu =1} ^ n \phi (f _ \nu ) : \ = \ \sum _{G} \prod _ {e \in G} < f _{ {e _ 1}} ,\ - Cf _{ {e _ 2}} > \prod _ {i \notin [G]} \phi (f _{i} ) . $$


Wick monomials have much to do with the Fock space via the Itô–Wick–Segal isomorphism. This rest on either of two narrowly related uniqueness theorems: the uniqueness of standard Gaussian functions or the uniqueness of Fock representations.

Let $ {\mathcal S} $ be a pre-Hilbert space. A representation of the canonical commutation relations over $ {\mathcal S} $ is a pair of linear mappings

$$ f \ \mapsto \ a(f \ ) ,\ \ g \ \mapsto \ a ^{*} (g) $$


from $ {\mathcal S} $ to operators $ a(f \ ) $, $ a ^{*} (g) $ defined on a dense domain $ D $ in a complex Hilbert space $ H $ such that

$$ a(f \ ) D \ \subset \ D ,\ \ a ^{*} (g) D \ \subset \ D , $$


$$ \langle x _{1} ,\ a (f \ )x _{2} \rangle \ = \ \langle a ^{*} (f \ )x _{1} ,\ x _{2} \rangle , $$


$$ [a(f \ ),\ a(g)] \ = \ [a ^{*} (f \ ),\ a ^{*} (g)] \ = \ 0, $$


$$ [a(f \ ),\ a ^{*} (g)] x \ = \ \langle f,\ g\rangle x , $$


for all $ x,\ x _{1} ,\ x _{2} \in D $, $ f ,\ g \in {\mathcal S} $. The representation is called a Fock representation if there is moreover an $ \Omega \in D $, called the vacuum vector, such that

$$ a(f \ ) \Omega \ = \ 0 ,\ \ f \in {\mathcal S} , $$


and such that $ D $ is the linear space span of the vectors $ a ^{*} (g _{1} ) \dots a ^{*} (g _{k} ) \Omega $, $ g _{i} \in {\mathcal S} $, $ k = 0,\ 1,\dots $. There is an existence theorem (cf. Fock space and Commutation and anti-commutation relationships, representation of) and the uniqueness theorem: If $ (a _{i} ,\ a _{i} ^{*} ) $ are two Fock representations over $ {\mathcal S} $ with vacuum vectors $ \Omega _{i} $, then they are unitarily equivalent and the unitary equivalence $ U $ is uniquely determined by $ U \Omega _{1} = \Omega _{2} $.


A standard Gaussian function on a real Hilbert space $ V $( called a Gaussian random process indexed by $ V $ in [a3]) is a mapping $ \phi $ from $ V $ to the random variables on a probability space $ (X ,\ {\mathcal B} ,\ \mu ) $ such that (almost everywhere)

$$ \phi (v+w) \ = \ \phi (v)+ \phi (w) ,\ \ v,\ w \in V , $$


$$ \phi ( \alpha v ) \ = \ \alpha \phi ( v) ,\ \ \alpha \in \mathbf R ,\ \ v \in V , $$


such that the $ \sigma $- algebra generated by the $ \phi (f \ ) $ is $ {\mathcal B} $( up to the sets of measure zero) and such that

$ \phi (v) $ is a Gaussian random variable of mean zero, and

$ \langle \phi (v) \phi (w)\rangle = \langle v,\ w\rangle $.


For these objects there is an existence theorem, and also the uniqueness theorem that two standard Gaussian functions $ \phi $ and $ \phi ^ \prime $ on probability spaces $ (X,\ {\mathcal B} , \mu ) $, $ (X ^ \prime ,\ {\mathcal B} ^ \prime , \mu ^ \prime ) $ are equivalent in the sense that there is an isomorphism of the two probability spaces under which $ \phi (v) $ and $ \phi ^ \prime (v) $ correspond for all $ v \in V $( cf. [a1], §4, [a3], Chap. 1). The uniqueness theorem is a special case of Kolmogorov's theorem that measure spaces are completely determined by consistent joint probability distributions.

Identifying the symmetric Fock space $ F(V) $ with the space $ L _{2} (X,\ {\mathcal B} ,\ \mu ) $ realizing the standard Gaussian function on $ H $, the Wick products of the $ \phi (v) $ are obtained by taking the usual products and then applying the orthogonal projection of $ F(V) $ onto its $ n $- particle subspace.

In the case of one Gaussian variable $ x $ with probability measure $ \pi ^ {- 1/2} e ^ {- x ^{2} /2} \ dx $, the above works out as follows:

$$ : x ^{n} :\ = \ h _{n} (x). $$


A Fock representation in $ L _{2} ( \mathbf R ,\ (2 \pi ) ^ {- 1/2} e ^ {- x ^{2} /2} \ dx ) $ is

$$ \Omega \ = \ 1 ,\ \ a \ = \ \frac{d}{dx} ,\ \ a ^{*} \ = \ x - \frac{d}{dx} , $$


and, indeed, $ h _{n} (x) = (x- d / dx ) ^{n} (1) $, which fits because the creation operator on $ F ( \mathbf R ) $ is $ a ^{*} (e ^ {\otimes n} ) = e ^ {\otimes (n+1)} $. In terms of the variable $ y = x / \sqrt 2 $,


$$ \Omega \ = \ 1,\ \ a \ = \ \frac{1}{\sqrt 2} \frac{d}{dy} ,\ \ a ^{*} \ = \ \sqrt 2 y - \frac{1}{\sqrt 2} \frac{d}{dy} , $$


$$ y \ = \ \frac{1}{\sqrt 2} (a + a ^{*} ), $$


and

$$ : y ^{n} :\ = \ ( \sqrt 2 ) ^{-n} h _{n} ( \sqrt 2 y ) \ = \ ( \sqrt 2 ) ^{-n} \sum _{k=0} ^ n \binom{n}{k} a ^{*k} a ^{n-k} , $$


where in the "binomial expansion of creation and annihilation operatorsbinomial expansion" of $ ( (a+a ^{*} ) / \sqrt 2 ) ^{n} $ on the right-hand side the annihilation operators $ a $ all come before the creation operators $ a ^{*} $( Wick ordening). Suitably interpreted, the same formula holds in general, [a3], p. 24.

References

[a1] R.L. Dobrushin, R.A. Minlos, "Polynomials in linear random functions" Russian Math. Surveys , 32 (1977) pp. 71–127 Uspekhi Mat. Nauk , 32 (1977) pp. 67–122
[a2] J. Dimock, J. Glimm, "Measures on Schwartz distribution space and applications to $P(\phi)_2$ field theories" Adv. in Math. , 12 (1974) pp. 58–83
[a3] B. Simon, "The $P(\phi)_2$ Euclidean (quantum) field theory" , Princeton Univ. Press (1974)
[a4] J. Glimm, A. Jaffe, "Quantum physics, a functional integral point of view" , Springer (1981)
How to Cite This Entry:
Wick product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wick_product&oldid=39781