Namespaces
Variants
Actions

Difference between revisions of "Wald identity"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
An identity in [[Sequential analysis|sequential analysis]] which states that the mathematical expectation of the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970101.png" /> of a random number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970102.png" /> of independent, identically-distributed random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970103.png" /> is equal to the product of the mathematical expectations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970105.png" />:
+
<!--
 +
w0970101.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/W097/W.0907010 Wald identity
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970106.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A sufficient condition for the Wald identity to be valid is that the mathematical expectations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970108.png" /> in fact exist, and for the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w0970109.png" /> to be a Markov time (i.e. for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701010.png" /> the event <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701011.png" /> is determined by the values of the random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701012.png" /> or, which is the same thing, the event <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701013.png" /> belongs to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701014.png" />-algebra generated by the random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701015.png" />). Wald's identity is a particular case of a fundamental theorem in sequential analysis stating that
+
An identity in [[Sequential analysis|sequential analysis]] which states that the mathematical expectation of the sum  $  S _  \tau  = X _ {1} + \dots + X _  \tau  $
 +
of a random number  $  \tau $
 +
of independent, identically-distributed random variables $  X _ {1} , X _ {2} \dots $
 +
is equal to the product of the mathematical expectations  $  {\mathsf E}  X _ {1} $
 +
and  $  {\mathsf E}  \tau $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
{\mathsf E} ( X _ {1} + \dots + X _  \tau  )  = \
 +
{\mathsf E} X _ {1} \cdot {\mathsf E} \tau .
 +
$$
  
for all complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701017.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701018.png" /> exists and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097010/w09701019.png" />. It was established by A. Wald [[#References|[1]]].
+
A sufficient condition for the Wald identity to be valid is that the mathematical expectations  $  {\mathsf E} | X _ {1} | $
 +
and  $  {\mathsf E} \tau $
 +
in fact exist, and for the random variable  $  \tau $
 +
to be a Markov time (i.e. for any  $  n = 1, 2 \dots $
 +
the event  $  \{ \tau = n \} $
 +
is determined by the values of the random variables  $  X _ {1} \dots X _ {n} $
 +
or, which is the same thing, the event  $  \{ \tau = n \} $
 +
belongs to the  $  \sigma $-
 +
algebra generated by the random variables  $  X _ {1} \dots X _ {n} $).  
 +
Wald's identity is a particular case of a fundamental theorem in sequential analysis stating that
  
====References====
+
$$ \tag{* }
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Wald,  "Sequential analysis" , Wiley (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Feller,  "An introduction to probability theory and its applications" , '''1''' , Wiley  (1957)  pp. Chapt.14</TD></TR></table>
+
{\mathsf E} \left [ e ^ {\lambda S _ \tau } ( \phi ( \lambda )) ^ {- \tau }
 +
\right ] =  1
 +
$$
  
 +
for all complex  $  \lambda $
 +
for which  $  \phi ( \lambda ) = {\mathsf E} e ^ {\lambda X _ {1} } $
 +
exists and  $  | \phi ( \lambda ) | \geq  1 $.
 +
It was established by A. Wald [[#References|[1]]].
  
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Wald, "Sequential analysis", Wiley (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its  applications"|"An introduction to probability theory and its  applications"]], '''1''', Wiley (1957) pp. Chapt.14</TD></TR></table>
  
 
====Comments====
 
====Comments====

Latest revision as of 08:28, 6 June 2020


An identity in sequential analysis which states that the mathematical expectation of the sum $ S _ \tau = X _ {1} + \dots + X _ \tau $ of a random number $ \tau $ of independent, identically-distributed random variables $ X _ {1} , X _ {2} \dots $ is equal to the product of the mathematical expectations $ {\mathsf E} X _ {1} $ and $ {\mathsf E} \tau $:

$$ {\mathsf E} ( X _ {1} + \dots + X _ \tau ) = \ {\mathsf E} X _ {1} \cdot {\mathsf E} \tau . $$

A sufficient condition for the Wald identity to be valid is that the mathematical expectations $ {\mathsf E} | X _ {1} | $ and $ {\mathsf E} \tau $ in fact exist, and for the random variable $ \tau $ to be a Markov time (i.e. for any $ n = 1, 2 \dots $ the event $ \{ \tau = n \} $ is determined by the values of the random variables $ X _ {1} \dots X _ {n} $ or, which is the same thing, the event $ \{ \tau = n \} $ belongs to the $ \sigma $- algebra generated by the random variables $ X _ {1} \dots X _ {n} $). Wald's identity is a particular case of a fundamental theorem in sequential analysis stating that

$$ \tag{* } {\mathsf E} \left [ e ^ {\lambda S _ \tau } ( \phi ( \lambda )) ^ {- \tau } \right ] = 1 $$

for all complex $ \lambda $ for which $ \phi ( \lambda ) = {\mathsf E} e ^ {\lambda X _ {1} } $ exists and $ | \phi ( \lambda ) | \geq 1 $. It was established by A. Wald [1].

References

[1] A. Wald, "Sequential analysis", Wiley (1952)
[2] W. Feller, "An introduction to probability theory and its applications", 1, Wiley (1957) pp. Chapt.14

Comments

The general result (*) is (also) referred to as Wald's formula.

References

[a1] A.V. [A.V. Skorokhod] Skorohod, "Random processes with independent increments" , Kluwer (1991) pp. 23 (Translated from Russian)
How to Cite This Entry:
Wald identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wald_identity&oldid=18269
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article