Namespaces
Variants
Actions

Difference between revisions of "Translations of semi-groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938601.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938602.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938603.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938604.png" />; a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938605.png" /> is a transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938606.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938607.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938608.png" />. The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t0938609.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386010.png" />) of all left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386011.png" /> is a sub-semi-group of the symmetric semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386012.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386013.png" /> the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386015.png" />) defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386016.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386017.png" />) is the left (respectively, right) translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386018.png" />. It is called the inner left (respectively, right) translation. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386019.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386020.png" />) of all inner left (respectively, right) translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386021.png" /> is a left ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386022.png" /> (respectively, a right ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png" />).
+
<!--
 +
t0938601.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/T093/T.0903860 Translations of semi\AAhgroups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A left translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386024.png" /> and a right translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386026.png" /> are called linked if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386027.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386028.png" />; in this case the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386029.png" /> is called a bi-translation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386030.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386031.png" />, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386032.png" /> is a bi-translation, called the inner bi-translation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386033.png" />. In semi-groups with a unit, and only in them, every bi-translation is inner. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386034.png" /> of all bi-translations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386035.png" /> is a sub-semi-group of the Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386036.png" />; it is called the translational hull of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386037.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386038.png" /> of all inner bi-translations is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386039.png" />, called the inner part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386040.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386041.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386042.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386043.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386044.png" />, called the canonical homomorphism. A semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386045.png" /> is called weakly reductive if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386046.png" /> the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386048.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386049.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386050.png" />, that is, the canonical homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386051.png" /> is an isomorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386052.png" /> is weakly reductive, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386053.png" /> coincides with the idealizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386054.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386055.png" />, that is, with the largest sub-semi-group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386056.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386057.png" /> as an ideal.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Transformations of semi-groups that satisfy special conditions: a right translation of a [[Semi-group|semi-group]]  $  S $
 +
is a transformation  $  \rho $
 +
such that  $  ( xy) \rho = x ( y \rho ) $
 +
for any  $  x, y \in S $;
 +
a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of  $  S $
 +
is a transformation  $  \lambda $
 +
such that  $  \lambda ( xy) = ( \lambda x) y $
 +
for any  $  x, y \in S $.  
 +
The successive application of two left translations (see [[Transformation semi-group|Transformation semi-group]]) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set  $  \Lambda ( S) $(
 +
respectively,  $  \textrm{ P } ( S) $)
 +
of all left (respectively, right) translations of  $  S $
 +
is a sub-semi-group of the symmetric semi-group  $  {\mathcal T} _ {S} $.  
 +
For any  $  a \in S $
 +
the transformation  $  \lambda _ {a} $(
 +
$  \rho _ {a} $)
 +
defined by  $  \lambda _ {a} x = ax $(
 +
respectively,  $  x \rho _ {a} = xa $)
 +
is the left (respectively, right) translation corresponding to  $  a $.  
 +
It is called the inner left (respectively, right) translation. The set  $  \Lambda _ {0} ( S) $(
 +
respectively,  $  \textrm{ P } _ {0} ( S) $)
 +
of all inner left (respectively, right) translations of  $  S $
 +
is a left ideal in  $  \Lambda ( S) $(
 +
respectively, a right ideal in  $  \textrm{ P } ( S) $).
 +
 
 +
A left translation  $  \lambda $
 +
and a right translation  $  \rho $
 +
of  $  S $
 +
are called linked if $  x ( \lambda y) = ( x \rho ) y $
 +
for any $  x, y \in S $;  
 +
in this case the pair $  ( \lambda , \rho ) $
 +
is called a bi-translation of $  S $.  
 +
For any $  a \in S $,  
 +
the pair $  ( \lambda _ {a} , \rho _ {a} ) $
 +
is a bi-translation, called the inner bi-translation corresponding to $  a $.  
 +
In semi-groups with a unit, and only in them, every bi-translation is inner. The set $  T ( S) $
 +
of all bi-translations of $  S $
 +
is a sub-semi-group of the Cartesian product $  \Lambda ( S) \times \textrm{ P } ( S) $;  
 +
it is called the translational hull of $  S $.  
 +
The set $  T _ {0} ( S) $
 +
of all inner bi-translations is an ideal in $  T ( S) $,  
 +
called the inner part of $  T ( S) $.  
 +
The mapping $  \tau :  S \rightarrow T _ {0} ( S) $
 +
defined by $  \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) $
 +
is a homomorphism of $  S $
 +
onto $  T _ {0} ( S) $,  
 +
called the canonical homomorphism. A semi-group $  S $
 +
is called weakly reductive if for any $  a, b \in S $
 +
the relations $  ax = bx $
 +
and $  xa = xb $
 +
for all $  x \in S $
 +
imply that $  a = b $,  
 +
that is, the canonical homomorphism of $  S $
 +
is an isomorphism. If $  S $
 +
is weakly reductive, then $  T ( S) $
 +
coincides with the idealizer of $  T _ {0} ( S) $
 +
in $  \Lambda ( S) \times \textrm{ P } ( S) $,  
 +
that is, with the largest sub-semi-group of $  \Lambda ( S) \times \textrm{ P } ( S) $
 +
containing $  T _ {0} ( S) $
 +
as an ideal.
  
 
Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory.
 
Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. [[Extension of a semi-group|Extension of a semi-group]]). Here the role of the translational hull is to a certain extent similar to that of the [[Holomorph of a group|holomorph of a group]] in group theory.

Latest revision as of 08:26, 6 June 2020


Transformations of semi-groups that satisfy special conditions: a right translation of a semi-group $ S $ is a transformation $ \rho $ such that $ ( xy) \rho = x ( y \rho ) $ for any $ x, y \in S $; a left translation is defined similarly. For convenience, left translations are often written as left operators. Thus, a left translation of $ S $ is a transformation $ \lambda $ such that $ \lambda ( xy) = ( \lambda x) y $ for any $ x, y \in S $. The successive application of two left translations (see Transformation semi-group) is written from right to left. The product of two left (respectively, right) translations of a semi-group is itself a left (respectively, right) translation, so that the set $ \Lambda ( S) $( respectively, $ \textrm{ P } ( S) $) of all left (respectively, right) translations of $ S $ is a sub-semi-group of the symmetric semi-group $ {\mathcal T} _ {S} $. For any $ a \in S $ the transformation $ \lambda _ {a} $( $ \rho _ {a} $) defined by $ \lambda _ {a} x = ax $( respectively, $ x \rho _ {a} = xa $) is the left (respectively, right) translation corresponding to $ a $. It is called the inner left (respectively, right) translation. The set $ \Lambda _ {0} ( S) $( respectively, $ \textrm{ P } _ {0} ( S) $) of all inner left (respectively, right) translations of $ S $ is a left ideal in $ \Lambda ( S) $( respectively, a right ideal in $ \textrm{ P } ( S) $).

A left translation $ \lambda $ and a right translation $ \rho $ of $ S $ are called linked if $ x ( \lambda y) = ( x \rho ) y $ for any $ x, y \in S $; in this case the pair $ ( \lambda , \rho ) $ is called a bi-translation of $ S $. For any $ a \in S $, the pair $ ( \lambda _ {a} , \rho _ {a} ) $ is a bi-translation, called the inner bi-translation corresponding to $ a $. In semi-groups with a unit, and only in them, every bi-translation is inner. The set $ T ( S) $ of all bi-translations of $ S $ is a sub-semi-group of the Cartesian product $ \Lambda ( S) \times \textrm{ P } ( S) $; it is called the translational hull of $ S $. The set $ T _ {0} ( S) $ of all inner bi-translations is an ideal in $ T ( S) $, called the inner part of $ T ( S) $. The mapping $ \tau : S \rightarrow T _ {0} ( S) $ defined by $ \tau ( a) = ( \lambda _ {a} , \rho _ {a} ) $ is a homomorphism of $ S $ onto $ T _ {0} ( S) $, called the canonical homomorphism. A semi-group $ S $ is called weakly reductive if for any $ a, b \in S $ the relations $ ax = bx $ and $ xa = xb $ for all $ x \in S $ imply that $ a = b $, that is, the canonical homomorphism of $ S $ is an isomorphism. If $ S $ is weakly reductive, then $ T ( S) $ coincides with the idealizer of $ T _ {0} ( S) $ in $ \Lambda ( S) \times \textrm{ P } ( S) $, that is, with the largest sub-semi-group of $ \Lambda ( S) \times \textrm{ P } ( S) $ containing $ T _ {0} ( S) $ as an ideal.

Translations of semi-groups, and in particular, translational hulls, play an important role in the study of ideal extensions of semi-groups (cf. Extension of a semi-group). Here the role of the translational hull is to a certain extent similar to that of the holomorph of a group in group theory.

References

[1] A.H. Clifford, G.B. Preston, "The algebraic theory of semi-groups" , 1 , Amer. Math. Soc. (1967)
[2] M. Petrich, "Introduction to semigroups" , C.E. Merrill (1973)
[3] M. Petrich, "The translational hull in semigroups and rings" Semigroup Forum , 1 (1970) pp. 283–360
How to Cite This Entry:
Translations of semi-groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Translations_of_semi-groups&oldid=18842
This article was adapted from an original article by L.N. Shevrin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article