Namespaces
Variants
Actions

Difference between revisions of "Spherical coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866601.png" /> which are related to the Cartesian coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866602.png" /> by the formulas
+
<!--
 +
s0866601.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/S086/S.0806660 Spherical coordinates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866603.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866604.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866606.png" />.
+
The numbers  $  \rho , \theta , \phi $
 +
which are related to the Cartesian coordinates  $  x, y, z $
 +
by the formulas
 +
 
 +
$$
 +
= \rho  \cos  \phi  \sin  \theta ,\ \
 +
= \rho  \sin  \phi  \sin  \theta ,\ \
 +
= \rho  \cos  \theta ,
 +
$$
 +
 
 +
where  $  0 \leq  \rho < \infty $,
 +
0 \leq  \phi < 2 \pi $,  
 +
0 \leq  \theta \leq  \pi $.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" />
Line 9: Line 29:
 
Figure: s086660a
 
Figure: s086660a
  
The coordinate surfaces are (see Fig.): concentric spheres with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866607.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866608.png" />; half-planes that pass through the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s0866609.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666010.png" />; circular cones with vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666011.png" /> and axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666012.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666013.png" />. The system of spherical coordinates is orthogonal.
+
The coordinate surfaces are (see Fig.): concentric spheres with centre $  O $
 +
$  ( \rho = OP = \textrm{ const } ) $;  
 +
half-planes that pass through the axis $  Oz $
 +
$  ( \phi = \textrm{ angle }  xOP  ^  \prime  = \textrm{ const } ) $;  
 +
circular cones with vertex $  O $
 +
and axis $  Oz $
 +
$  ( \theta = \textrm{ angle }  zOP = \textrm{ const } ) $.  
 +
The system of spherical coordinates is orthogonal.
  
 
The [[Lamé coefficients|Lamé coefficients]] are
 
The [[Lamé coefficients|Lamé coefficients]] are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666014.png" /></td> </tr></table>
+
$$
 +
L _  \rho  = 1,\ \
 +
L _  \phi  = \rho  \sin  \theta ,\ \
 +
L _  \theta  = \rho .
 +
$$
  
 
The element of surface area is
 
The element of surface area is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666015.png" /></td> </tr></table>
+
$$
 +
d \sigma  = \
 +
\sqrt {\rho  ^ {2}  \sin  ^ {2}  \theta \
 +
( d \rho  d \phi )  ^ {2} + \rho  ^ {2} ( d \rho  d
 +
\theta )  ^ {2} + \rho  ^ {4}  \sin  ^ {2}  \theta  ( d \phi  d \theta )  ^ {2} } .
 +
$$
  
 
The volume element is
 
The volume element is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666016.png" /></td> </tr></table>
+
$$
 +
dV  = \rho  ^ {2}  \sin  \theta  d \rho  d \phi  d \theta .
 +
$$
  
 
The basic operations of vector calculus are
 
The basic operations of vector calculus are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666017.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm grad} _  \rho  f  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666018.png" /></td> </tr></table>
+
\frac{\partial  f }{\partial  \rho }
 +
,\ \
 +
\mathop{\rm grad} _  \phi  f  =
 +
\frac{1}{\rho  \sin  \theta }
 +
 +
\frac{\partial  f }{
 +
\partial  \phi }
 +
,\ \
 +
\mathop{\rm grad} _  \theta  f  =
 +
\frac{1} \rho
 +
 +
\frac{\partial  f }{\partial  \theta }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666019.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm div}  \mathbf a  =
 +
\frac{2} \rho
 +
a _  \rho  +
 +
\frac{\partial  a _  \rho  }{\partial
 +
\rho }
 +
+
 +
\frac{1}{\rho  \sin  \theta }
 +
 +
\frac{\partial  a _  \phi  }{\partial  \phi
 +
}
 +
+
 +
\frac{1}{\rho  \mathop{\rm tan}  \theta }
 +
a _  \theta  +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666020.png" /></td> </tr></table>
+
\frac{1} \rho
 +
 +
\frac{\partial  a _  \theta  }{\partial  \theta }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666021.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm rot} _  \rho  \mathbf a  =
 +
\frac{1}{\rho  \sin  \theta }
 +
 +
\frac{\partial  a _  \theta  }{\partial  \phi }
 +
-
 +
\frac{1} \rho
 +
 +
\frac{\partial  a _  \phi  }{
 +
\partial  \theta }
 +
-  
 +
\frac{1}{\rho  \mathop{\rm tan}  \theta }
 +
a _  \phi  ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666022.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm rot} _  \phi  \mathbf a  =
 +
\frac{1} \rho
 +
 +
\frac{\partial  a _  \rho  }{\partial  \theta
 +
}
 +
-
 +
\frac{\partial  a _  \theta  }{\partial  \rho }
 +
-  
 +
\frac{a _  \theta  } \rho
 +
;
 +
$$
  
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666023.png" />, called generalized spherical coordinates, are related to the Cartesian coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666024.png" /> by the formulas
+
$$
 +
\mathop{\rm rot} _  \theta  \mathbf a  =
 +
\frac{\partial  a _  \phi  }{\partial  \rho }
 +
+
 +
\frac{a _  \phi  } \rho
 +
-
 +
\frac{1}{\rho \
 +
\sin  \theta }
 +
 +
\frac{\partial  a _  \rho  }{\partial  \phi }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666025.png" /></td> </tr></table>
+
$$
 +
\Delta f  =
 +
\frac{\partial  ^ {2} f }{\partial  \rho  ^ {2} }
 +
+
 +
\frac{2} \rho
 +
 +
\frac{\partial
 +
f }{\partial  \rho }
 +
+
 +
\frac{1}{\rho  ^ {2}  \sin  ^ {2}  \theta }
 +
 +
\frac{\partial
 +
^ {2} f }{\partial  \phi  ^ {2} }
 +
+
 +
\frac{1}{\rho  ^ {2} }
 +
 +
\frac{\partial  ^ {2}
 +
f }{\partial  \theta  ^ {2} }
 +
+
 +
\frac{ \mathop{\rm cot}  \theta }{\rho  ^ {2} }
 +
 +
\frac{\partial  f }{\partial  \theta }
 +
.
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666030.png" />. The coordinate surface are: ellipsoids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666031.png" />, half-planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666032.png" /> and elliptical cones <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666033.png" />.
+
The numbers  $  u , v, w $,  
 +
called generalized spherical coordinates, are related to the Cartesian coordinates  $  x, y, z $
 +
by the formulas
  
 +
$$
 +
x  =  au  \cos  v  \sin  w,\ \
 +
y  =  bu  \sin  v  \sin  w,\ \
 +
z  =  cu  \cos  w,
 +
$$
  
 +
where  $  0 \leq  u < \infty $,
 +
$  0 \leq  v < 2 \pi $,
 +
$  0 \leq  w \leq  \pi $,
 +
$  a > b $,
 +
$  b > 0 $.
 +
The coordinate surface are: ellipsoids  $  ( u = \textrm{ const } ) $,
 +
half-planes  $  ( v= \textrm{ const } ) $
 +
and elliptical cones  $  ( w = \textrm{ const } ) $.
  
 
====Comments====
 
====Comments====
If the surface has been given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666034.png" />, then the element of surface area can be written as:
+
If the surface has been given by $  R = R( \phi , \theta ) $,  
 +
then the element of surface area can be written as:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086660/s08666035.png" /></td> </tr></table>
+
$$
 +
dS  = R \sqrt {\left \{ R  ^ {2} + \left (
 +
\frac{\partial  R }{\partial  \theta }
 +
\right )  ^ {2} \right \} \sin  ^ {2}  \theta +
 +
\left (
 +
\frac{\partial  R }{\partial  \theta }
 +
\right )  ^ {2} } \
 +
d \theta  d \phi .
 +
$$
  
 
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]].
 
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]].

Latest revision as of 08:22, 6 June 2020


The numbers $ \rho , \theta , \phi $ which are related to the Cartesian coordinates $ x, y, z $ by the formulas

$$ x = \rho \cos \phi \sin \theta ,\ \ y = \rho \sin \phi \sin \theta ,\ \ z = \rho \cos \theta , $$

where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $, $ 0 \leq \theta \leq \pi $.

Figure: s086660a

The coordinate surfaces are (see Fig.): concentric spheres with centre $ O $ $ ( \rho = OP = \textrm{ const } ) $; half-planes that pass through the axis $ Oz $ $ ( \phi = \textrm{ angle } xOP ^ \prime = \textrm{ const } ) $; circular cones with vertex $ O $ and axis $ Oz $ $ ( \theta = \textrm{ angle } zOP = \textrm{ const } ) $. The system of spherical coordinates is orthogonal.

The Lamé coefficients are

$$ L _ \rho = 1,\ \ L _ \phi = \rho \sin \theta ,\ \ L _ \theta = \rho . $$

The element of surface area is

$$ d \sigma = \ \sqrt {\rho ^ {2} \sin ^ {2} \theta \ ( d \rho d \phi ) ^ {2} + \rho ^ {2} ( d \rho d \theta ) ^ {2} + \rho ^ {4} \sin ^ {2} \theta ( d \phi d \theta ) ^ {2} } . $$

The volume element is

$$ dV = \rho ^ {2} \sin \theta d \rho d \phi d \theta . $$

The basic operations of vector calculus are

$$ \mathop{\rm grad} _ \rho f = \ \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \frac{1}{\rho \sin \theta } \frac{\partial f }{ \partial \phi } ,\ \ \mathop{\rm grad} _ \theta f = \frac{1} \rho \frac{\partial f }{\partial \theta } ; $$

$$ \mathop{\rm div} \mathbf a = \frac{2} \rho a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + \frac{1}{\rho \sin \theta } \frac{\partial a _ \phi }{\partial \phi } + \frac{1}{\rho \mathop{\rm tan} \theta } a _ \theta + \frac{1} \rho \frac{\partial a _ \theta }{\partial \theta } ; $$

$$ \mathop{\rm rot} _ \rho \mathbf a = \frac{1}{\rho \sin \theta } \frac{\partial a _ \theta }{\partial \phi } - \frac{1} \rho \frac{\partial a _ \phi }{ \partial \theta } - \frac{1}{\rho \mathop{\rm tan} \theta } a _ \phi ; $$

$$ \mathop{\rm rot} _ \phi \mathbf a = \frac{1} \rho \frac{\partial a _ \rho }{\partial \theta } - \frac{\partial a _ \theta }{\partial \rho } - \frac{a _ \theta } \rho ; $$

$$ \mathop{\rm rot} _ \theta \mathbf a = \frac{\partial a _ \phi }{\partial \rho } + \frac{a _ \phi } \rho - \frac{1}{\rho \ \sin \theta } \frac{\partial a _ \rho }{\partial \phi } ; $$

$$ \Delta f = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + \frac{2} \rho \frac{\partial f }{\partial \rho } + \frac{1}{\rho ^ {2} \sin ^ {2} \theta } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } + \frac{1}{\rho ^ {2} } \frac{\partial ^ {2} f }{\partial \theta ^ {2} } + \frac{ \mathop{\rm cot} \theta }{\rho ^ {2} } \frac{\partial f }{\partial \theta } . $$

The numbers $ u , v, w $, called generalized spherical coordinates, are related to the Cartesian coordinates $ x, y, z $ by the formulas

$$ x = au \cos v \sin w,\ \ y = bu \sin v \sin w,\ \ z = cu \cos w, $$

where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ 0 \leq w \leq \pi $, $ a > b $, $ b > 0 $. The coordinate surface are: ellipsoids $ ( u = \textrm{ const } ) $, half-planes $ ( v= \textrm{ const } ) $ and elliptical cones $ ( w = \textrm{ const } ) $.

Comments

If the surface has been given by $ R = R( \phi , \theta ) $, then the element of surface area can be written as:

$$ dS = R \sqrt {\left \{ R ^ {2} + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} \right \} \sin ^ {2} \theta + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} } \ d \theta d \phi . $$

A general method to transform vector functions when new coordinates are introduced is, e.g., given in [a1].

References

[a1] D.E. Rutherford, "Vector methods" , Oliver & Boyd (1949)
[a2] M.R. Spiegel, "Vector analysis and an introduction to tensor analysis" , McGraw-Hill (1959)
[a3] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961) pp. 11; 258
How to Cite This Entry:
Spherical coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_coordinates&oldid=18298
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article