Namespaces
Variants
Actions

Difference between revisions of "Skew-symmetric matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX partially done)
Line 1: Line 1:
A square [[Matrix|matrix]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857201.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857202.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857203.png" />. The rank of a skew-symmetric matrix is an even number. Any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857204.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857205.png" /> is the sum of a symmetric and a skew-symmetric matrix:
+
A square [[matrix]] $A$ over a field of characteristic $\ne 2$ such that $A^T = -A$. The rank of a skew-symmetric matrix is an even number. Any square matrix $B$ over a field of characteristic $=ne 2$ is the sum of a [[symmetric matrix]] and a skew-symmetric matrix:
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857206.png" /></td> </tr></table>
+
B = \frac12(B + B^T) + \frac12(B - B^T) \ .
 
+
$$
The non-zero roots of the characteristic polynomial of a real skew-symmetric matrix are purely imaginary numbers. A real skew-symmetric matrix is similar to a matrix
+
The non-zero roots of the [[characteristic polynomial]] of a real skew-symmetric matrix are purely [[imaginary number]]s. A real skew-symmetric matrix is [[Similar matrices|similar]] to a matrix
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857207.png" /></td> </tr></table>
+
\text{diag}[A_1,A_2,\ldots,A_t,0,0,\ldots]
 
+
$$
 
where
 
where
 +
$$
 +
A_i = \alpha_i \left({ \begin{array}{cc}{ 0 & 1 \\ -1 & 0 }\end{array} }\right)
 +
$$
 +
with $\alpha_i$ real numbers, $i = 1,\ldots,t$. The [[Jordan normal form]] $J$ of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan cell $J_m(\lambda)$ with elementary divisor $(X-\lambda)^m$, where $\lambda \ne 0$, is repeated in $J$ as many times as is the cell $J_m(-\lambda)$; and 2) if $m$ is even, the Jordan cell $J_m(0)$ with elementary divisor $X^m$ is repeated in $J$ an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857208.png" /></td> </tr></table>
+
The set of all skew-symmetric matrices of order $n$ over a field $k$ forms a [[Lie algebra]] over $k$ with respect to matrix addition and the commutator $[A,B] = AB - BA$.
 
 
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857209.png" /> real numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572010.png" />. The Jordan form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572011.png" /> of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572012.png" /> with elementary divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572014.png" />, is repeated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572015.png" /> as many times as is the cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572016.png" />; and 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572017.png" /> is even, the Jordan cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572018.png" /> with elementary divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572019.png" /> is repeated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572020.png" /> an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix.
 
 
 
The set of all skew-symmetric matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572021.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572022.png" /> forms a [[Lie algebra|Lie algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572023.png" /> with respect to matrix addition and the commutator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572024.png" />.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F.R. [F.R. Gantmakher] Gantmacher,  "The theory of matrices" , '''1''' , Chelsea, reprint  (1977)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  F.R. [F.R. Gantmakher] Gantmacher,  "The theory of matrices" , '''1''' , Chelsea, reprint  (1977)  (Translated from Russian)</TD></TR>
 +
</table>
  
  
Line 24: Line 26:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)  pp. Chapt. X</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)  pp. Chapt. X</TD></TR>
 +
</table>
 +
 
 +
{{TEX|part}}

Revision as of 20:18, 7 April 2016

A square matrix $A$ over a field of characteristic $\ne 2$ such that $A^T = -A$. The rank of a skew-symmetric matrix is an even number. Any square matrix $B$ over a field of characteristic $=ne 2$ is the sum of a symmetric matrix and a skew-symmetric matrix: $$ B = \frac12(B + B^T) + \frac12(B - B^T) \ . $$ The non-zero roots of the characteristic polynomial of a real skew-symmetric matrix are purely imaginary numbers. A real skew-symmetric matrix is similar to a matrix $$ \text{diag}[A_1,A_2,\ldots,A_t,0,0,\ldots] $$ where $$ A_i = \alpha_i \left({ \begin{array}{cc}{ 0 & 1 \\ -1 & 0 }\end{array} }\right) $$ with $\alpha_i$ real numbers, $i = 1,\ldots,t$. The Jordan normal form $J$ of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan cell $J_m(\lambda)$ with elementary divisor $(X-\lambda)^m$, where $\lambda \ne 0$, is repeated in $J$ as many times as is the cell $J_m(-\lambda)$; and 2) if $m$ is even, the Jordan cell $J_m(0)$ with elementary divisor $X^m$ is repeated in $J$ an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix.

The set of all skew-symmetric matrices of order $n$ over a field $k$ forms a Lie algebra over $k$ with respect to matrix addition and the commutator $[A,B] = AB - BA$.

References

[1] F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian)


Comments

The Lie algebra of skew-symmetric matrices over a field of size is denoted by . The complex Lie algebras () and () are simple of type and , respectively.

References

[a1] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X
How to Cite This Entry:
Skew-symmetric matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skew-symmetric_matrix&oldid=14074
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article