Namespaces
Variants
Actions

Difference between revisions of "Schläfli integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
An integral representation of the [[Bessel functions|Bessel functions]] for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833601.png" />:
+
<!--
 +
s0833601.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/S083/S.0803360 Schl\AGafli integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833602.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833603.png" /></td> </tr></table>
+
An integral representation of the [[Bessel functions|Bessel functions]] for any  $  n $:
  
when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833604.png" />. It is valid for all integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833605.png" />. Formula (*) can be derived from
+
$$ \tag{* }
 +
J _ {n} ( z)  =
 +
\frac{1} \pi
 +
\int\limits _ { 0 } ^  \pi  \cos ( n \theta - z  \sin  \theta ) d
 +
\theta +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833606.png" /></td> </tr></table>
+
$$
 +
-
 +
\frac{\sin  n \pi } \pi
 +
\int\limits _ { 0 } ^  \infty 
 +
e ^ {- n \theta - z  \sinh  \theta }  d \theta ,
 +
$$
 +
 
 +
when  $  \mathop{\rm Re}  z > 0 $.  
 +
It is valid for all integer  $  n $.  
 +
Formula (*) can be derived from
 +
 
 +
$$
 +
J _ {n}  = 
 +
\frac{z  ^ {n} }{2 ^ {\pi + 1 } \pi i }
 +
\int\limits _ {- \infty } ^ { ( }  0+) t  ^ {-} n- 1  \mathop{\rm exp} \left ( t -
 +
\frac{z  ^ {2} }{4t}
 +
\right )  dt.
 +
$$
  
 
Formula (*) was first given by L. Schläfli .
 
Formula (*) was first given by L. Schläfli .
Line 13: Line 43:
 
An integral representation of the [[Legendre polynomials|Legendre polynomials]]:
 
An integral representation of the [[Legendre polynomials|Legendre polynomials]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833607.png" /></td> </tr></table>
+
$$
 +
P _ {n} ( z)  =
 +
\frac{1}{2 \pi i }
 +
\int\limits _ { C }
 +
\frac{( t  ^ {2} - 1)  ^ {n} }{2  ^ {n}
 +
( t- z)  ^ {n+} 1 }
 +
  dt,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833608.png" /> is a contour making one counter-clockwise turn around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833609.png" />. This representation was first given by L. Schläfli [[#References|[2]]].
+
where $  C $
 +
is a contour making one counter-clockwise turn around $  z $.  
 +
This representation was first given by L. Schläfli [[#References|[2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Schläfli,  "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen"  ''Math. Ann.'' , '''3''' :  1  (1871)  pp. 134–149</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Schläfli,  "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin  (1881)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Krazer,  W. Franz,  "Transzendente Funktionen" , Akademie Verlag  (1960)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Schläfli,  "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen"  ''Math. Ann.'' , '''3''' :  1  (1871)  pp. 134–149</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Schläfli,  "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin  (1881)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Krazer,  W. Franz,  "Transzendente Funktionen" , Akademie Verlag  (1960)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The reduction of the Schläfli integral to the second integral representation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s08336010.png" /> is valid for unrestricted values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s08336011.png" /> (see also [[#References|[a3]]], 6.2
+
The reduction of the Schläfli integral to the second integral representation for $  J _ {n} ( z) $
 +
is valid for unrestricted values of $  n $(
 +
see also [[#References|[a3]]], 6.2
  
 
and ). The integral representation for the Legendre polynomials follows from the [[Rodrigues formula|Rodrigues formula]], similarly as for the [[Jacobi polynomials|Jacobi polynomials]] (cf. [[#References|[a2]]], (4.4.6) and (4.8.1)).
 
and ). The integral representation for the Legendre polynomials follows from the [[Rodrigues formula|Rodrigues formula]], similarly as for the [[Jacobi polynomials|Jacobi polynomials]] (cf. [[#References|[a2]]], (4.4.6) and (4.8.1)).

Latest revision as of 08:12, 6 June 2020


An integral representation of the Bessel functions for any $ n $:

$$ \tag{* } J _ {n} ( z) = \frac{1} \pi \int\limits _ { 0 } ^ \pi \cos ( n \theta - z \sin \theta ) d \theta + $$

$$ - \frac{\sin n \pi } \pi \int\limits _ { 0 } ^ \infty e ^ {- n \theta - z \sinh \theta } d \theta , $$

when $ \mathop{\rm Re} z > 0 $. It is valid for all integer $ n $. Formula (*) can be derived from

$$ J _ {n} = \frac{z ^ {n} }{2 ^ {\pi + 1 } \pi i } \int\limits _ {- \infty } ^ { ( } 0+) t ^ {-} n- 1 \mathop{\rm exp} \left ( t - \frac{z ^ {2} }{4t} \right ) dt. $$

Formula (*) was first given by L. Schläfli .

An integral representation of the Legendre polynomials:

$$ P _ {n} ( z) = \frac{1}{2 \pi i } \int\limits _ { C } \frac{( t ^ {2} - 1) ^ {n} }{2 ^ {n} ( t- z) ^ {n+} 1 } dt, $$

where $ C $ is a contour making one counter-clockwise turn around $ z $. This representation was first given by L. Schläfli [2].

References

[1] L. Schläfli, "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen" Math. Ann. , 3 : 1 (1871) pp. 134–149
[2] L. Schläfli, "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin (1881)
[3] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6
[4] A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)

Comments

The reduction of the Schläfli integral to the second integral representation for $ J _ {n} ( z) $ is valid for unrestricted values of $ n $( see also [a3], 6.2

and ). The integral representation for the Legendre polynomials follows from the Rodrigues formula, similarly as for the Jacobi polynomials (cf. [a2], (4.4.6) and (4.8.1)).

References

[a1] F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)
[a2] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
[a3] G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952)
How to Cite This Entry:
Schläfli integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schl%C3%A4fli_integral&oldid=13342
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article