Namespaces
Variants
Actions

Difference between revisions of "Rational variety"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (gather refs)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
An [[Algebraic variety|algebraic variety]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776601.png" />, defined over an [[Algebraically closed field|algebraically closed field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776602.png" />, whose field of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776603.png" /> is isomorphic to a purely [[Transcendental extension|transcendental extension]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776604.png" /> of finite degree. In other words, a rational variety is an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776605.png" /> that is birationally isomorphic to a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776606.png" />.
+
<!--
 +
r0776601.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/R077/R.0707660 Rational variety
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A complete smooth rational variety possesses the following birational invariants. The dimensions of all spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776607.png" /> of regular differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776608.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r0776609.png" /> are equal to 0. In addition, the multiple genus
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766010.png" /></td> </tr></table>
+
An [[Algebraic variety|algebraic variety]]  $  X $,
 +
defined over an [[Algebraically closed field|algebraically closed field]]  $  k $,
 +
whose field of rational functions  $  k ( X) $
 +
is isomorphic to a purely [[Transcendental extension|transcendental extension]] of  $  k $
 +
of finite degree. In other words, a rational variety is an algebraic variety  $  X $
 +
that is birationally isomorphic to a projective space  $  \mathbf P  ^ {n} $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766011.png" /> is the canonical divisor of the algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766012.png" />, that is, the [[Kodaira dimension|Kodaira dimension]] of the rational variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766013.png" /> is equal to 0.
+
A complete smooth rational variety possesses the following birational invariants. The dimensions of all spaces  $  H  ^ {0} ( X , \Omega _ {X}  ^ {k} ) $
 +
of regular differential  $  k $-
 +
forms on  $  X $
 +
are equal to 0. In addition, the multiple genus
  
In low dimension the above invariants uniquely distinguish the class of rational varieties among all algebraic varieties. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766014.png" /> and the genus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766015.png" /> is equal to 0, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766016.png" /> is a [[Rational curve|rational curve]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766017.png" />, the arithmetic genus
+
$$
 +
P _ {n}  =   \mathop{\rm dim} _ {k} \
 +
H  ^ {0} ( X , {\mathcal O} _ {X} ( n K _ {X} ) )  = 0 \ \
 +
\textrm{ for }  n > 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766018.png" /></td> </tr></table>
+
where  $  K _ {X} $
 +
is the [[canonical divisor]] of the algebraic variety  $  X $,
 +
that is, the [[Kodaira dimension|Kodaira dimension]] of the rational variety  $  X $
 +
is equal to 0.
  
and the multiple genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766019.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766020.png" /> is a [[Rational surface|rational surface]]. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077660/r07766021.png" />, there is no good criterion of rationality, due to the negative solution of the [[Lüroth problem|Lüroth problem]].
+
In low dimension the above invariants uniquely distinguish the class of rational varieties among all algebraic varieties. Thus, if  $  \mathop{\rm dim} _ {k}  X = 1 $
 +
and the genus of  $  X $
 +
is equal to 0, then $  X $
 +
is a [[Rational curve|rational curve]]. If  $  \mathop{\rm dim} _ {k}  X = 2 $,  
 +
the arithmetic genus
  
====References====
+
$$
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich,   "Basic algebraic geometry" , Springer (1977)  (Translated from Russian)</TD></TR></table>
+
p _ {a}  =   \mathop{\rm dim} _ {k} \
 
+
H ^ {0} ( X , \Omega _ {X} ^ {2} ) -
 
+
  \mathop{\rm dim} _ {k}  H  ^ {0} ( X , \Omega _ {X}  ^ {1} ) =  0
 
+
$$
====Comments====
 
  
 +
and the multiple genus  $  P _ {2} = 0 $,
 +
then  $  X $
 +
is a [[Rational surface|rational surface]]. However, if  $  \mathop{\rm dim} _ {k}  X \geq  3 $,
 +
there is no good criterion of rationality, due to the negative solution of the [[Lüroth problem|Lüroth problem]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Beauville,   J.-L. Colliot-Hélène,   J.J. Sansuc,   P. Swinnerton-Dyer,   "Variétés stablement rationelles non-rationelles" ''Ann. of Math.'' , '''121''' (1985) pp. 283–318</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Beauville, J.-L. Colliot-Thélène, J.J. Sansuc, P. Swinnerton-Dyer, "Variétés stablement rationelles non-rationelles" ''Ann. of Math.'' , '''121''' (1985) pp. 283–318</TD></TR>
 +
</table>

Latest revision as of 07:33, 13 November 2023


An algebraic variety $ X $, defined over an algebraically closed field $ k $, whose field of rational functions $ k ( X) $ is isomorphic to a purely transcendental extension of $ k $ of finite degree. In other words, a rational variety is an algebraic variety $ X $ that is birationally isomorphic to a projective space $ \mathbf P ^ {n} $.

A complete smooth rational variety possesses the following birational invariants. The dimensions of all spaces $ H ^ {0} ( X , \Omega _ {X} ^ {k} ) $ of regular differential $ k $- forms on $ X $ are equal to 0. In addition, the multiple genus

$$ P _ {n} = \mathop{\rm dim} _ {k} \ H ^ {0} ( X , {\mathcal O} _ {X} ( n K _ {X} ) ) = 0 \ \ \textrm{ for } n > 0 , $$

where $ K _ {X} $ is the canonical divisor of the algebraic variety $ X $, that is, the Kodaira dimension of the rational variety $ X $ is equal to 0.

In low dimension the above invariants uniquely distinguish the class of rational varieties among all algebraic varieties. Thus, if $ \mathop{\rm dim} _ {k} X = 1 $ and the genus of $ X $ is equal to 0, then $ X $ is a rational curve. If $ \mathop{\rm dim} _ {k} X = 2 $, the arithmetic genus

$$ p _ {a} = \mathop{\rm dim} _ {k} \ H ^ {0} ( X , \Omega _ {X} ^ {2} ) - \mathop{\rm dim} _ {k} H ^ {0} ( X , \Omega _ {X} ^ {1} ) = 0 $$

and the multiple genus $ P _ {2} = 0 $, then $ X $ is a rational surface. However, if $ \mathop{\rm dim} _ {k} X \geq 3 $, there is no good criterion of rationality, due to the negative solution of the Lüroth problem.

References

[1] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[a1] A. Beauville, J.-L. Colliot-Thélène, J.J. Sansuc, P. Swinnerton-Dyer, "Variétés stablement rationelles non-rationelles" Ann. of Math. , 121 (1985) pp. 283–318
How to Cite This Entry:
Rational variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_variety&oldid=14618
This article was adapted from an original article by Vik.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article