Namespaces
Variants
Actions

Ramanujan function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11F [MSN][ZBL]

The function $n \mapsto \tau(n)$, where $\tau(n)$ is the coefficient of $x^n$ ($n \ge 1$) in the expansion of the product $$ D(x) = x \prod_{m=1}^\infty (1 - x^m)^{24} $$ as a power series: $$ D(x) = \sum_{n=1}^\infty \tau(n) x^n \ . $$ If one puts $$ \Delta(z) = D(\exp(2\pi i z)) $$ then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [1]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) the following properties of the Ramanujan function: it is a multiplicative arithmetic function $$ \tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; $$ and $$ \tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . $$

Consequently, the calculation of $\tau(n)$ reduces to calculating $\tau(p)$ when $p$ is prime. It is known that $|\tau(p)| \le p^{11/2}$ (see Ramanujan hypothesis). It is known that the Ramanujan function satisfies many congruence relations. For example, Ramanujan knew the congruence $$ \tau(p) \equiv 1 + p^{11} \pmod{691} \ . $$

Examples of congruence relations discovered later are: $$ \tau(n) \equiv \sigma_{11}(n) \pmod{2^{11}} \ \text{if}\ n \equiv 1 \pmod 8 $$ $$ \tau(p) \equiv p + p^{10} \pmod{25} $$ etc.

References

[1] S. Ramanujan, "On certain arithmetical functions" Trans. Cambridge Philos. Soc. , 22 (1916) pp. 159–184 Zbl 07426016
[2] J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" Sém. Delange–Pisot–Poitou (Théorie des nombres) , 9 : 14 (1967/68) pp. 1–17
[3] O.M. Fomenko, "Applications of the theory of modular forms to number theory" J. Soviet Math. , 14 : 4 (1980) pp. 1307–1362 Zbl 0446.10021 Itogi Nauk. i Tekhn. Algebra Topol. Geom. , 15 (1977) pp. 5–91 Zbl 0434.10018

Comments

D.H. Lehmer asked whether there exists an $n \in \mathbb{N}$ such that $\tau(n) = 0$, [a2]. This is still (1990) not known, but one believes that the answer is "no" . For an elementary introduction to the background of $\Delta(z)$, see [a1].

The properties mentioned can be combined in the Euler product expansion of the formal Dirichlet series $$ \sum_n \tau(n) n^{-s} = \prod_p \left(1 - \tau(p) p^{-s} + p^{11-2s} \right)^{-1} $$ which follows from $\Delta$ being a Hecke eigenform of weight 12.

References

[a1] T.M. Apostol, "Modular functions and Dirichlet series in number theory" (2nd ed) , Springer (1990) Zbl 0697.10023
[a2] D. H. Lehmer, "The vanishing of Ramanujan’s function $\tau(n)$", Duke Math. J. 14 (1947) 429-433. DOI 10.1215/S0012-7094-47-01436-1 MR0021027 Zbl 0029.34502
How to Cite This Entry:
Ramanujan function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ramanujan_function&oldid=52820
This article was adapted from an original article by K.Yu. Bulota (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article