Namespaces
Variants
Actions

Difference between revisions of "Pettis integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
An integral of a vector-valued function with respect to a scalar measure, which is a so-called weak integral. It was introduced by B.J. Pettis [[#References|[1]]].
 
An integral of a vector-valued function with respect to a scalar measure, which is a so-called weak integral. It was introduced by B.J. Pettis [[#References|[1]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724901.png" /> be the vector space of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724903.png" />, with values in the Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724904.png" /> and given on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724905.png" /> with a countably-additive measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724906.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724907.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724908.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p0724909.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249010.png" /> is called weakly measurable if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249011.png" /> the scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249012.png" /> is measurable. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249013.png" /> is Pettis integrable over a measurable subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249014.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249015.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249016.png" /> is integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249017.png" /> and if there exists an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249018.png" /> such that
+
Let $F(X,E,\mathfrak B,\mu)$ be the vector space of functions $x(t)$, $t\in E$, with values in the Banach space $X$ and given on a set $(E,\mathfrak B,\mu)$ with a countably-additive measure $\mu$ on the $\sigma$-algebra $\mathfrak B$ of subsets of $E$. The function $x(t)$ is called weakly measurable if for any $f\in X^*$ the scalar function $f[x(t)]$ is measurable. The function $x(t)$ is Pettis integrable over a measurable subset $M\subset E$ if for any $f\in X^*$ the function $f[x(t)]$ is integrable on $M$ and if there exists an element $x(M)\in X$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249019.png" /></td> </tr></table>
+
$$f[x(M)]=\int\limits_Mf[x(t)]d\mu.$$
  
 
Then, by definition,
 
Then, by definition,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249020.png" /></td> </tr></table>
+
$$\int\limits_Mx(t)d\mu=x(M)$$
  
is called the Pettis integral. That integral was introduced for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072490/p07249021.png" /> with the ordinary Lebesgue measure by I.M. Gel'fand [[#References|[2]]].
+
is called the Pettis integral. That integral was introduced for the case $E=(a,b)$ with the ordinary Lebesgue measure by I.M. Gel'fand [[#References|[2]]].
  
 
====References====
 
====References====

Latest revision as of 09:44, 22 August 2014

An integral of a vector-valued function with respect to a scalar measure, which is a so-called weak integral. It was introduced by B.J. Pettis [1].

Let $F(X,E,\mathfrak B,\mu)$ be the vector space of functions $x(t)$, $t\in E$, with values in the Banach space $X$ and given on a set $(E,\mathfrak B,\mu)$ with a countably-additive measure $\mu$ on the $\sigma$-algebra $\mathfrak B$ of subsets of $E$. The function $x(t)$ is called weakly measurable if for any $f\in X^*$ the scalar function $f[x(t)]$ is measurable. The function $x(t)$ is Pettis integrable over a measurable subset $M\subset E$ if for any $f\in X^*$ the function $f[x(t)]$ is integrable on $M$ and if there exists an element $x(M)\in X$ such that

$$f[x(M)]=\int\limits_Mf[x(t)]d\mu.$$

Then, by definition,

$$\int\limits_Mx(t)d\mu=x(M)$$

is called the Pettis integral. That integral was introduced for the case $E=(a,b)$ with the ordinary Lebesgue measure by I.M. Gel'fand [2].

References

[1] B.J. Pettis, "On integration in vector spaces" Trans. Amer. Math. Soc. , 44 : 2 (1938) pp. 277–304
[2] I.M. Gel'fand, "Sur un lemme de la théorie des espaces linéaires" Zap. Naukovodosl. Inst. Mat. Mekh. Kharkov. Mat. Tov. , 13 : 1 (1936) pp. 35–40
[3] T. Hildebrandt, "Integration in abstract spaces" Bull. Amer. Math. Soc. , 59 (1953) pp. 111–139
[4] E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)


Comments

References

[a1] J. Diestel, J.J. Uhl jr., "Vector measures" , Math. Surveys , 15 , Amer. Math. Soc. (1977)
[a2] M. Talagrand, "Pettis integral and measure theory" , Mem. Amer. Math. Soc. , 307 , Amer. Math. Soc. (1984)
[a3] K. Bichteler, "Integration theory (with special attention to vector measures)" , Lect. notes in math. , 315 , Springer (1973)
How to Cite This Entry:
Pettis integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pettis_integral&oldid=33082
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article