Namespaces
Variants
Actions

Difference between revisions of "Peirce decomposition"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Undo revision 48150 by Ulf Rehmann (talk))
Tag: Undo
m (typos)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
The representation of a ring as the direct sum of subrings related to a given idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719701.png" />. For a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719702.png" /> containing an idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719703.png" />, there exist left, right and two-sided Peirce decompositions, which are defined by
+
<!--
 +
p0719701.png
 +
$#A+1 = 51 n = 0
 +
$#C+1 = 51 : ~/encyclopedia/old_files/data/P071/P.0701970 Peirce decomposition
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719704.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719705.png" /></td> </tr></table>
+
The representation of a ring as the direct sum of subrings related to a given idempotent  $  e $.
 +
For a ring  $  R $
 +
containing an idempotent  $  e $,
 +
there exist left, right and two-sided Peirce decompositions, which are defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719706.png" /></td> </tr></table>
+
$$
 +
=   \mathop{\rm Re} + R( 1- e),
 +
$$
  
respectively. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719707.png" /> has no identity, then one puts, by definition,
+
$$
 +
= eR + ( 1- e) R,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719708.png" /></td> </tr></table>
+
$$
 +
= eRe + eR( 1- e)+( 1- e) Re+( 1- e) R( 1- e),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p0719709.png" /></td> </tr></table>
+
respectively. If  $  R $
 +
has no identity, then one puts, by definition,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197010.png" /></td> </tr></table>
+
$$
 +
R( 1- e)  = \{ {x- xe } : {x \in R } \}
 +
,
 +
$$
  
The sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197012.png" /> are defined analogously. Therefore, in a two-sided Peirce decomposition an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197013.png" /> can be represented as
+
$$
 +
( 1- e) Re  = \{ xe- exe: x \in R \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197014.png" /></td> </tr></table>
+
$$
 +
( 1- e) R( 1- e)  = \{ x- ex- xe+ exe: x \in R \} .
 +
$$
 +
 
 +
The sets  $  ( 1- e) R $
 +
and  $  eR( 1- e) $
 +
are defined analogously. Therefore, in a two-sided Peirce decomposition an element  $  x \in R $
 +
can be represented as
 +
 
 +
$$
 +
x  =  exe+( ex- exe)+( xe- exe)+( x- ex- xe+ exe),
 +
$$
  
 
in a left decomposition as
 
in a left decomposition as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197015.png" /></td> </tr></table>
+
$$
 +
= xe+( x- xe) ,
 +
$$
  
 
and in a right decomposition as
 
and in a right decomposition as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197016.png" /></td> </tr></table>
+
$$
 +
= ex +( x- ex).
 +
$$
  
There is also a Peirce decomposition with respect to an orthogonal system of idempotents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197017.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197018.png" />:
+
There is also a Peirce decomposition with respect to an orthogonal system of idempotents $  \{ e _ {1} \dots e _ {n} \} $
 +
where $  \sum _ {i} e _ {i} = 1 $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197019.png" /></td> </tr></table>
+
$$
 +
= \sum _ {i,j } e _ {i}  \mathop{\rm Re} _ {j} .
 +
$$
  
 
This decomposition was proposed by B. Peirce [[#References|[1]]].
 
This decomposition was proposed by B. Peirce [[#References|[1]]].
Line 36: Line 77:
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B. Peirce,  "Linear associative algebra"  ''Amer. J. Math.'' , '''4'''  (1881)  pp. 97–229</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B. Peirce,  "Linear associative algebra"  ''Amer. J. Math.'' , '''4'''  (1881)  pp. 97–229</TD></TR></table>
  
 +
====Comments====
 +
In modern ring theory the Peirce decomposition appears in the ring of a Morita context  $  ( R, S, V, W) $,
 +
where  $  R $
 +
and  $  S $
 +
are Morita related if they are subrings of a ring  $  T $
 +
with an idempotent  $  e $
 +
such that  $  R= eTe $,
 +
$  S=( 1- e) T( 1- e) $,
 +
i.e., they are parts of a Peirce decomposition of  $  T $(
 +
see [[#References|[a3]]], p.12).
  
 +
A context or a set of pre-equivalence data is a sextuple  $  ( R, R  ^  \prime  , M , M  ^  \prime  , \tau , \tau  ^  \prime  ) $
 +
where  $  R $
 +
and  $  R  ^  \prime  $
 +
are rings,  $  M $
 +
is a left  $  R $-,
 +
right  $  R  ^  \prime  $-
 +
bimodule,  $  M  ^  \prime  $
 +
is a right  $  R $-,
 +
left  $  R  ^  \prime  $-
 +
bimodule and  $  \tau :  M \otimes _ {R  ^  \prime  } M  ^  \prime  \rightarrow R $,
 +
$  \tau  ^  \prime  :  M  ^  \prime  \otimes _ {R} M \rightarrow R  ^  \prime  $
 +
are bimodule homomorphisms, such that the following two associativity diagrams commute:
  
====Comments====
+
$$
In modern ring theory the Peirce decomposition appears in the ring of a Morita context <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197022.png" /> are Morita related if they are subrings of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197023.png" /> with an idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197026.png" />, i.e., they are parts of a Peirce decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197027.png" /> (see [[#References|[a3]]], p.12).
 
  
A context or a set of pre-equivalence data is a sextuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197028.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197030.png" /> are rings, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197031.png" /> is a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197032.png" />-, right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197033.png" />-bimodule, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197034.png" /> is a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197035.png" />-, left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197036.png" />-bimodule and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197038.png" /> are bimodule homomorphisms, such that the following two associativity diagrams commute:
+
\begin{array}{ccc}
 +
{M \otimes _ {R  ^  \prime  } M  ^  \prime  \otimes _ {R} M }  & \mathop \rightarrow \limits ^ { {1 \otimes \tau  ^  \prime  }}  &M \otimes _ {R  ^  \prime  } R  ^  \prime  \\
 +
{ {\tau \otimes 1 } \downarrow }  &{}  &\downarrow  \\
 +
{R \otimes _ {R} M }  &\rightarrow  & M  \\
 +
\end{array}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197039.png" /></td> </tr></table>
+
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197040.png" /></td> </tr></table>
+
$$
 +
 
 +
\begin{array}{ccc}
 +
{M  ^  \prime  \otimes _ {R} M \otimes _ {R  ^  \prime  } M  ^  \prime  }  & \mathop \rightarrow \limits ^ { {1 \otimes \tau }}  &{M  ^  \prime  \otimes R }  \\
 +
{ {\tau  ^  \prime  \otimes 1 } \downarrow }  &{}  &\downarrow  \\
 +
{R  ^  \prime  \otimes _ {R  ^  \prime  } M }  &\rightarrow  &{M  ^  \prime  }  \\
 +
\end{array}
 +
 
 +
$$
 +
 
 +
Using  $  \tau , \tau  ^  \prime  $,
 +
the set of all  $  ( 2 \times 2) $-
 +
matrices
  
Using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197041.png" />, the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197042.png" />-matrices
+
$$
 +
\left (
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197043.png" /></td> </tr></table>
+
\begin{array}{cc}
 +
R  & M  \\
 +
{M  ^  \prime  }  &{R  ^  \prime  }  \\
 +
\end{array}
 +
\right ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197044.png" /></td> </tr></table>
+
$$
 +
= \
 +
\left \{ \left (
 +
\begin{array}{cc}
 +
r  & m  \\
 +
{m  ^  \prime  }  &{r  ^  \prime  }  \\
 +
\end{array}
 +
\right ) : r \in R
 +
, m \in M , m  ^  \prime  \in M  ^  \prime  , r  ^  \prime  \in R  ^  \prime  \right \}
 +
$$
  
 
acquires a multiplication (using the usual matrix formulas) and this multiplication is associative precisely if the two diagrams above commute. Such a ring is then called the ring of a Morita context.
 
acquires a multiplication (using the usual matrix formulas) and this multiplication is associative precisely if the two diagrams above commute. Such a ring is then called the ring of a Morita context.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197045.png" /> is a Morita context with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197047.png" /> epic, then the functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197049.png" /> define an equivalence of categories between the categories of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197050.png" />-modules and right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071970/p07197051.png" />-modules; cf. also [[Morita equivalence|Morita equivalence]]. Cf. [[#References|[a1]]], §4.1 for more details.
+
If $  ( R, R  ^  \prime  , M, M  ^  \prime  , \tau , \tau  ^  \prime  ) $
 +
is a Morita context with $  \tau $
 +
and $  \tau  ^  \prime  $
 +
epic, then the functors $  N \mapsto M  ^  \prime  \otimes _ {R} N $,  
 +
$  N  ^  \prime  \mapsto M \otimes _ {R  ^  \prime  } N  ^  \prime  $
 +
define an equivalence of categories between the categories of left $  R $-
 +
modules and right $  R  ^  \prime  $-
 +
modules; cf. also [[Morita equivalence|Morita equivalence]]. Cf. [[#References|[a1]]], §4.1 for more details.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.H. Rowen,  "Ring theory" , '''I''' , Acad. Press  (1988)  pp. 36</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Jacobson,  "Structure of rings" , Amer. Math. Soc.  (1956)  pp. 48, 50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.C. McConnell,  J.C. Robson,  "Noncommutative Noetherian rings" , Wiley  (1987)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.H. Rowen,  "Ring theory" , '''I''' , Acad. Press  (1988)  pp. 36</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Jacobson,  "Structure of rings" , Amer. Math. Soc.  (1956)  pp. 48, 50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.C. McConnell,  J.C. Robson,  "Noncommutative Noetherian rings" , Wiley  (1987)</TD></TR></table>

Latest revision as of 15:56, 7 June 2020


The representation of a ring as the direct sum of subrings related to a given idempotent $ e $. For a ring $ R $ containing an idempotent $ e $, there exist left, right and two-sided Peirce decompositions, which are defined by

$$ R = \mathop{\rm Re} + R( 1- e), $$

$$ R = eR + ( 1- e) R, $$

$$ R = eRe + eR( 1- e)+( 1- e) Re+( 1- e) R( 1- e), $$

respectively. If $ R $ has no identity, then one puts, by definition,

$$ R( 1- e) = \{ {x- xe } : {x \in R } \} , $$

$$ ( 1- e) Re = \{ xe- exe: x \in R \} , $$

$$ ( 1- e) R( 1- e) = \{ x- ex- xe+ exe: x \in R \} . $$

The sets $ ( 1- e) R $ and $ eR( 1- e) $ are defined analogously. Therefore, in a two-sided Peirce decomposition an element $ x \in R $ can be represented as

$$ x = exe+( ex- exe)+( xe- exe)+( x- ex- xe+ exe), $$

in a left decomposition as

$$ x = xe+( x- xe) , $$

and in a right decomposition as

$$ x = ex +( x- ex). $$

There is also a Peirce decomposition with respect to an orthogonal system of idempotents $ \{ e _ {1} \dots e _ {n} \} $ where $ \sum _ {i} e _ {i} = 1 $:

$$ R = \sum _ {i,j } e _ {i} \mathop{\rm Re} _ {j} . $$

This decomposition was proposed by B. Peirce [1].

References

[1] B. Peirce, "Linear associative algebra" Amer. J. Math. , 4 (1881) pp. 97–229

Comments

In modern ring theory the Peirce decomposition appears in the ring of a Morita context $ ( R, S, V, W) $, where $ R $ and $ S $ are Morita related if they are subrings of a ring $ T $ with an idempotent $ e $ such that $ R= eTe $, $ S=( 1- e) T( 1- e) $, i.e., they are parts of a Peirce decomposition of $ T $( see [a3], p.12).

A context or a set of pre-equivalence data is a sextuple $ ( R, R ^ \prime , M , M ^ \prime , \tau , \tau ^ \prime ) $ where $ R $ and $ R ^ \prime $ are rings, $ M $ is a left $ R $-, right $ R ^ \prime $- bimodule, $ M ^ \prime $ is a right $ R $-, left $ R ^ \prime $- bimodule and $ \tau : M \otimes _ {R ^ \prime } M ^ \prime \rightarrow R $, $ \tau ^ \prime : M ^ \prime \otimes _ {R} M \rightarrow R ^ \prime $ are bimodule homomorphisms, such that the following two associativity diagrams commute:

$$ \begin{array}{ccc} {M \otimes _ {R ^ \prime } M ^ \prime \otimes _ {R} M } & \mathop \rightarrow \limits ^ { {1 \otimes \tau ^ \prime }} &M \otimes _ {R ^ \prime } R ^ \prime \\ { {\tau \otimes 1 } \downarrow } &{} &\downarrow \\ {R \otimes _ {R} M } &\rightarrow & M \\ \end{array} $$

and

$$ \begin{array}{ccc} {M ^ \prime \otimes _ {R} M \otimes _ {R ^ \prime } M ^ \prime } & \mathop \rightarrow \limits ^ { {1 \otimes \tau }} &{M ^ \prime \otimes R } \\ { {\tau ^ \prime \otimes 1 } \downarrow } &{} &\downarrow \\ {R ^ \prime \otimes _ {R ^ \prime } M } &\rightarrow &{M ^ \prime } \\ \end{array} $$

Using $ \tau , \tau ^ \prime $, the set of all $ ( 2 \times 2) $- matrices

$$ \left ( \begin{array}{cc} R & M \\ {M ^ \prime } &{R ^ \prime } \\ \end{array} \right ) = $$

$$ = \ \left \{ \left ( \begin{array}{cc} r & m \\ {m ^ \prime } &{r ^ \prime } \\ \end{array} \right ) : r \in R , m \in M , m ^ \prime \in M ^ \prime , r ^ \prime \in R ^ \prime \right \} $$

acquires a multiplication (using the usual matrix formulas) and this multiplication is associative precisely if the two diagrams above commute. Such a ring is then called the ring of a Morita context.

If $ ( R, R ^ \prime , M, M ^ \prime , \tau , \tau ^ \prime ) $ is a Morita context with $ \tau $ and $ \tau ^ \prime $ epic, then the functors $ N \mapsto M ^ \prime \otimes _ {R} N $, $ N ^ \prime \mapsto M \otimes _ {R ^ \prime } N ^ \prime $ define an equivalence of categories between the categories of left $ R $- modules and right $ R ^ \prime $- modules; cf. also Morita equivalence. Cf. [a1], §4.1 for more details.

References

[a1] L.H. Rowen, "Ring theory" , I , Acad. Press (1988) pp. 36
[a2] N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) pp. 48, 50
[a3] J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987)
How to Cite This Entry:
Peirce decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Peirce_decomposition&oldid=49362
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article