Namespaces
Variants
Actions

Difference between revisions of "Paley-Wiener theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711201.png" /> vanishes almost everywhere outside an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711202.png" /> if and only if its [[Fourier transform|Fourier transform]]
+
<!--
 +
p0711201.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/P071/P.0701120 Paley\ANDWiener theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711203.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A function  $  f \in L _ {2} ( - \infty , + \infty ) $
 +
vanishes almost everywhere outside an interval  $  [ - A , A ] $
 +
if and only if its [[Fourier transform|Fourier transform]]
 +
 
 +
$$
 +
F ( y)  = \
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } f ( x) e  ^ {ixy}  d x ,\  y \in \mathbf R ,
 +
$$
  
 
satisfies
 
satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711204.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } | F ( y) |  ^ {2}  d y  < \infty
 +
$$
  
and is the restriction to the real line of a certain entire analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711205.png" /> of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711206.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711207.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711208.png" /> (see [[#References|[1]]]). A description of the image of a certain space of functions or generalized functions on a locally compact group under the [[Fourier transform|Fourier transform]] or under some other injective integral transform is called an analogue of the Paley–Wiener theorem; the most frequently encountered analogues of the Paley–Wiener theorem are a description of the image of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p0711209.png" /> of infinitely-differentiable functions of compact support and a description of the image of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112011.png" /> of rapidly-decreasing infinitely-differentiable functions on a locally compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112012.png" /> under the Fourier transform on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112013.png" />. Such analogues are known, in particular, for Abelian locally compact groups, for certain connected Lie groups, for certain subalgebras of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112014.png" /> on real semi-simple Lie groups, and also for certain other integral transforms.
+
and is the restriction to the real line of a certain entire analytic function $  F ( z) $
 +
of a complex variable $  z $
 +
satisfying $  | F ( z) | \leq  e ^ {A | z | } $
 +
for all $  z \in \mathbf C $(
 +
see [[#References|[1]]]). A description of the image of a certain space of functions or generalized functions on a locally compact group under the [[Fourier transform|Fourier transform]] or under some other injective integral transform is called an analogue of the Paley–Wiener theorem; the most frequently encountered analogues of the Paley–Wiener theorem are a description of the image of the space $  C _ {0}  ^  \infty  ( G) $
 +
of infinitely-differentiable functions of compact support and a description of the image of the space $  S ( G) $
 +
of rapidly-decreasing infinitely-differentiable functions on a locally compact group $  G $
 +
under the Fourier transform on $  G $.  
 +
Such analogues are known, in particular, for Abelian locally compact groups, for certain connected Lie groups, for certain subalgebras of the algebra $  C _ {0}  ^  \infty  ( G) $
 +
on real semi-simple Lie groups, and also for certain other integral transforms.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Wiener,  R.E.A.C. Paley,  "Fourier transforms in the complex domain" , Amer. Math. Soc.  (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Generalized functions in mathematical physics" , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  M.I. Graev,  N.Ya. Vilenkin,  "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  D.P. Zhelobenko,  "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  W. Rudin,  "Functional analysis" , McGraw-Hill  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Wiener,  R.E.A.C. Paley,  "Fourier transforms in the complex domain" , Amer. Math. Soc.  (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Generalized functions in mathematical physics" , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  M.I. Graev,  N.Ya. Vilenkin,  "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  D.P. Zhelobenko,  "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  W. Rudin,  "Functional analysis" , McGraw-Hill  (1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112015.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112016.png" />. Then the Fourier transform <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112018.png" /> can be extended to an entire analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112019.png" /> satisfying: for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112020.png" /> there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112021.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112022.png" />,
+
Let $  \phi \in C _ {0}  ^  \infty  ( \mathbf R ) $
 +
with $  \supp  \phi \subset  [- A, A] $.  
 +
Then the Fourier transform $  \widehat \phi  $
 +
of $  \phi $
 +
can be extended to an entire analytic function on $  \mathbf C $
 +
satisfying: for any integer $  m \geq  0 $
 +
there is a constant $  c _ {m} > 0 $
 +
such that for all $  w \in \mathbf C $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
| \widehat \phi  ( w) |  \leq  c _ {m} ( 1+ | w | )  ^ {-} m
 +
e ^ {2 \pi A  |  \mathop{\rm Im}  w | } .
 +
$$
  
Conversely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112024.png" /> be an entire function which satisfies (*) (replacing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112025.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112026.png" />), for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112027.png" />. Then there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112028.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071120/p07112030.png" />.
+
Conversely, let $  F: \mathbf C \rightarrow \mathbf C $
 +
be an entire function which satisfies (*) (replacing $  \widehat \phi  $
 +
with $  F  $),  
 +
for some $  A > 0 $.  
 +
Then there exists a $  \phi \in C _ {0}  ^  \infty  ( \mathbf R ) $
 +
with $  \supp  \phi \subset  [- A, A] $
 +
and $  \widehat \phi  = F $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Trèves,  "Topological vectorspaces, distributions and kernels" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Warner,  "Harmonic analysis on semi-simple Lie groups" , '''II''' , Springer  (1972)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Helgason,  "Groups and geometric analysis" , Acad. Press  (1984)  pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Katznelson,  "An introduction to harmonic analysis" , Dover, reprint  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Trèves,  "Topological vectorspaces, distributions and kernels" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Warner,  "Harmonic analysis on semi-simple Lie groups" , '''II''' , Springer  (1972)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Helgason,  "Groups and geometric analysis" , Acad. Press  (1984)  pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Katznelson,  "An introduction to harmonic analysis" , Dover, reprint  (1976)</TD></TR></table>

Latest revision as of 08:04, 6 June 2020


A function $ f \in L _ {2} ( - \infty , + \infty ) $ vanishes almost everywhere outside an interval $ [ - A , A ] $ if and only if its Fourier transform

$$ F ( y) = \ \int\limits _ {- \infty } ^ { {+ } \infty } f ( x) e ^ {ixy} d x ,\ y \in \mathbf R , $$

satisfies

$$ \int\limits _ {- \infty } ^ { {+ } \infty } | F ( y) | ^ {2} d y < \infty $$

and is the restriction to the real line of a certain entire analytic function $ F ( z) $ of a complex variable $ z $ satisfying $ | F ( z) | \leq e ^ {A | z | } $ for all $ z \in \mathbf C $( see [1]). A description of the image of a certain space of functions or generalized functions on a locally compact group under the Fourier transform or under some other injective integral transform is called an analogue of the Paley–Wiener theorem; the most frequently encountered analogues of the Paley–Wiener theorem are a description of the image of the space $ C _ {0} ^ \infty ( G) $ of infinitely-differentiable functions of compact support and a description of the image of the space $ S ( G) $ of rapidly-decreasing infinitely-differentiable functions on a locally compact group $ G $ under the Fourier transform on $ G $. Such analogues are known, in particular, for Abelian locally compact groups, for certain connected Lie groups, for certain subalgebras of the algebra $ C _ {0} ^ \infty ( G) $ on real semi-simple Lie groups, and also for certain other integral transforms.

References

[1] N. Wiener, R.E.A.C. Paley, "Fourier transforms in the complex domain" , Amer. Math. Soc. (1934)
[2] V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian)
[3] I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , 5. Integral geometry and representation theory , Acad. Press (1966) (Translated from Russian)
[4] D.P. Zhelobenko, "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow (1974) (In Russian)
[5] W. Rudin, "Functional analysis" , McGraw-Hill (1973)

Comments

Let $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ with $ \supp \phi \subset [- A, A] $. Then the Fourier transform $ \widehat \phi $ of $ \phi $ can be extended to an entire analytic function on $ \mathbf C $ satisfying: for any integer $ m \geq 0 $ there is a constant $ c _ {m} > 0 $ such that for all $ w \in \mathbf C $,

$$ \tag{* } | \widehat \phi ( w) | \leq c _ {m} ( 1+ | w | ) ^ {-} m e ^ {2 \pi A | \mathop{\rm Im} w | } . $$

Conversely, let $ F: \mathbf C \rightarrow \mathbf C $ be an entire function which satisfies (*) (replacing $ \widehat \phi $ with $ F $), for some $ A > 0 $. Then there exists a $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ with $ \supp \phi \subset [- A, A] $ and $ \widehat \phi = F $.

References

[a1] F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)
[a2] G. Warner, "Harmonic analysis on semi-simple Lie groups" , II , Springer (1972)
[a3] S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4
[a4] Y. Katznelson, "An introduction to harmonic analysis" , Dover, reprint (1976)
How to Cite This Entry:
Paley-Wiener theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paley-Wiener_theorem&oldid=15042
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article