Namespaces
Variants
Actions

Difference between revisions of "Nuclear bilinear form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Bilinear form|bilinear form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678201.png" /> on the Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678202.png" /> of two locally convex spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678203.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678204.png" /> that can be represented as
+
<!--
 +
n0678201.png
 +
$#A+1 = 37 n = 0
 +
$#C+1 = 37 : ~/encyclopedia/old_files/data/N067/N.0607820 Nuclear bilinear form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678205.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678206.png" /> is a summable sequence, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678208.png" /> are equicontinuous sequences (cf. [[Equicontinuity|Equicontinuity]]) in the dual spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n0678209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782012.png" />, respectively, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782013.png" /> denotes the value of the linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782014.png" /> on the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782015.png" />. All nuclear bilinear forms are continuous. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782016.png" /> is a [[Nuclear space|nuclear space]], then for any locally convex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782017.png" /> all continuous bilinear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782018.png" /> are nuclear (the kernel theorem). This result is due to A. Grothendieck [[#References|[1]]]; the form stated is given in [[#References|[2]]]; for other statements see [[#References|[3]]]. The converse holds: If a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782019.png" /> satisfies the kernel theorem, then it is a nuclear space.
+
A [[Bilinear form|bilinear form]] $  B ( f , g) $
 +
on the Cartesian product  $  F \times G $
 +
of two locally convex spaces  $  F $
 +
and  $  G $
 +
that can be represented as
  
For spaces of smooth functions of compact support, the kernel theorem was first obtained by L. Schwartz [[#References|[4]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782020.png" /> be the nuclear space of all infinitely-differentiable functions with compact support on the real line, equipped with the standard locally convex topology of Schwartz, so that the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782021.png" /> consists of all generalized functions on the line. In the special case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782022.png" />, the kernel theorem is equivalent to the following assertion: Every continuous bilinear functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782023.png" /> has the form
+
$$
 +
B ( f, g)  = \
 +
\sum _ {i = 1 } ^  \infty 
 +
\lambda _ {i} \langle  f, f _ {i} ^ { \prime } \rangle \langle  g, g _ {i}  ^  \prime  \rangle,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782024.png" /></td> </tr></table>
+
where  $  \{ \lambda _ {i} \} $
 +
is a summable sequence,  $  \{ f _ {i} ^ { \prime } \} $
 +
and  $  \{ g _ {i}  ^  \prime  \} $
 +
are equicontinuous sequences (cf. [[Equicontinuity|Equicontinuity]]) in the dual spaces  $  F ^ { \prime } $
 +
and  $  G  ^  \prime  $
 +
of  $  F $
 +
and  $  G $,
 +
respectively, and  $  \langle  a, a  ^  \prime  \rangle $
 +
denotes the value of the linear functional  $  a  ^  \prime  $
 +
on the vector  $  a $.
 +
All nuclear bilinear forms are continuous. If  $  F $
 +
is a [[Nuclear space|nuclear space]], then for any locally convex space  $  G $
 +
all continuous bilinear forms on  $  F \times G $
 +
are nuclear (the kernel theorem). This result is due to A. Grothendieck [[#References|[1]]]; the form stated is given in [[#References|[2]]]; for other statements see [[#References|[3]]]. The converse holds: If a space  $  F $
 +
satisfies the kernel theorem, then it is a nuclear space.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782025.png" /></td> </tr></table>
+
For spaces of smooth functions of compact support, the kernel theorem was first obtained by L. Schwartz [[#References|[4]]]. Let  $  D $
 +
be the nuclear space of all infinitely-differentiable functions with compact support on the real line, equipped with the standard locally convex topology of Schwartz, so that the dual space  $  D  ^  \prime  $
 +
consists of all generalized functions on the line. In the special case when  $  F = G = D $,
 +
the kernel theorem is equivalent to the following assertion: Every continuous bilinear functional on  $  D \times D $
 +
has the form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782027.png" /> is a generalized function in two variables. There are similar statements of the kernel theorem for spaces of smooth functions in several variables with compact support, for spaces of rapidly-decreasing functions, and for other specific nuclear spaces. Similar results are valid for multilinear forms.
+
$$
 +
B ( f, g)  = \langle  f ( t _ {1} ) g ( t _ {2} ), F \rangle =
 +
$$
  
A continuous bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782028.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782029.png" /> can be identified with a continuous linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782030.png" /> by using the equality
+
$$
 +
= \
 +
\int\limits _ {- \infty } ^  \infty  F ( t _ {1} , t _ {2} ) f
 +
( t _ {1} ) g ( t _ {2} )  dt _ {1}  dt _ {2} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782031.png" /></td> </tr></table>
+
where  $  f ( t), g ( t) \in D $
 +
and  $  F = F ( t _ {1} , t _ {2} ) $
 +
is a generalized function in two variables. There are similar statements of the kernel theorem for spaces of smooth functions in several variables with compact support, for spaces of rapidly-decreasing functions, and for other specific nuclear spaces. Similar results are valid for multilinear forms.
  
and this leads to Schwartz' kernel theorem: For any continuous linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782032.png" /> there is a unique generalized function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782033.png" /> such that
+
A continuous bilinear form  $  B ( f, g) $
 +
on  $  D \times D $
 +
can be identified with a continuous linear operator  $  A: D \rightarrow D  ^  \prime  $
 +
by using the equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782034.png" /></td> </tr></table>
+
$$
 +
B ( f, g)  = \langle  g, Af \rangle,
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782035.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782036.png" /> is an integral operator with kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067820/n06782037.png" />.
+
and this leads to Schwartz' kernel theorem: For any continuous linear mapping  $  A:  D \rightarrow D  ^  \prime  $
 +
there is a unique generalized function  $  F ( t _ {1} , t _ {2} ) $
 +
such that
 +
 
 +
$$
 +
A:  f ( t _ {1} )  \mapsto  \int\limits _ {- \infty } ^  \infty 
 +
F ( t _ {1} , t _ {2} ) f ( t _ {2} )  dt _ {2}  $$
 +
 
 +
for all $  f \in D $.  
 +
In other words, $  A $
 +
is an integral operator with kernel $  F $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc.  (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Pietsch,  "Nuclear locally convex spaces" , Springer  (1972)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  N.Ya. Vilenkin,  "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Schwartz,  "Théorie des noyaux" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc.  (1952)  pp. 220–230</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L. Schwartz,  "Espaces de fonctions différentielles à valeurs vectorielles"  ''J. d'Anal. Math.'' , '''4'''  (1954–1955)  pp. 88–148</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc.  (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Pietsch,  "Nuclear locally convex spaces" , Springer  (1972)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  N.Ya. Vilenkin,  "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Schwartz,  "Théorie des noyaux" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc.  (1952)  pp. 220–230</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L. Schwartz,  "Espaces de fonctions différentielles à valeurs vectorielles"  ''J. d'Anal. Math.'' , '''4'''  (1954–1955)  pp. 88–148</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Trèves,  "Topological vectorspaces, distributions and kernels" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Schwartz,  "Théorie des distributions" , '''1–2''' , Hermann  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Trèves,  "Topological vectorspaces, distributions and kernels" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L. Schwartz,  "Théorie des distributions" , '''1–2''' , Hermann  (1966)</TD></TR></table>

Latest revision as of 08:03, 6 June 2020


A bilinear form $ B ( f , g) $ on the Cartesian product $ F \times G $ of two locally convex spaces $ F $ and $ G $ that can be represented as

$$ B ( f, g) = \ \sum _ {i = 1 } ^ \infty \lambda _ {i} \langle f, f _ {i} ^ { \prime } \rangle \langle g, g _ {i} ^ \prime \rangle, $$

where $ \{ \lambda _ {i} \} $ is a summable sequence, $ \{ f _ {i} ^ { \prime } \} $ and $ \{ g _ {i} ^ \prime \} $ are equicontinuous sequences (cf. Equicontinuity) in the dual spaces $ F ^ { \prime } $ and $ G ^ \prime $ of $ F $ and $ G $, respectively, and $ \langle a, a ^ \prime \rangle $ denotes the value of the linear functional $ a ^ \prime $ on the vector $ a $. All nuclear bilinear forms are continuous. If $ F $ is a nuclear space, then for any locally convex space $ G $ all continuous bilinear forms on $ F \times G $ are nuclear (the kernel theorem). This result is due to A. Grothendieck [1]; the form stated is given in [2]; for other statements see [3]. The converse holds: If a space $ F $ satisfies the kernel theorem, then it is a nuclear space.

For spaces of smooth functions of compact support, the kernel theorem was first obtained by L. Schwartz [4]. Let $ D $ be the nuclear space of all infinitely-differentiable functions with compact support on the real line, equipped with the standard locally convex topology of Schwartz, so that the dual space $ D ^ \prime $ consists of all generalized functions on the line. In the special case when $ F = G = D $, the kernel theorem is equivalent to the following assertion: Every continuous bilinear functional on $ D \times D $ has the form

$$ B ( f, g) = \langle f ( t _ {1} ) g ( t _ {2} ), F \rangle = $$

$$ = \ \int\limits _ {- \infty } ^ \infty F ( t _ {1} , t _ {2} ) f ( t _ {1} ) g ( t _ {2} ) dt _ {1} dt _ {2} , $$

where $ f ( t), g ( t) \in D $ and $ F = F ( t _ {1} , t _ {2} ) $ is a generalized function in two variables. There are similar statements of the kernel theorem for spaces of smooth functions in several variables with compact support, for spaces of rapidly-decreasing functions, and for other specific nuclear spaces. Similar results are valid for multilinear forms.

A continuous bilinear form $ B ( f, g) $ on $ D \times D $ can be identified with a continuous linear operator $ A: D \rightarrow D ^ \prime $ by using the equality

$$ B ( f, g) = \langle g, Af \rangle, $$

and this leads to Schwartz' kernel theorem: For any continuous linear mapping $ A: D \rightarrow D ^ \prime $ there is a unique generalized function $ F ( t _ {1} , t _ {2} ) $ such that

$$ A: f ( t _ {1} ) \mapsto \int\limits _ {- \infty } ^ \infty F ( t _ {1} , t _ {2} ) f ( t _ {2} ) dt _ {2} $$

for all $ f \in D $. In other words, $ A $ is an integral operator with kernel $ F $.

References

[1] A. Grothendieck, "Produits tensoriels topologiques et espaces nucléaires" , Amer. Math. Soc. (1955)
[2] A. Pietsch, "Nuclear locally convex spaces" , Springer (1972) (Translated from German)
[3] I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , 4 , Acad. Press (1964) (Translated from Russian)
[4] L. Schwartz, "Théorie des noyaux" , Proc. Internat. Congress Mathematicians (Cambridge, 1950) , 1 , Amer. Math. Soc. (1952) pp. 220–230
[5] L. Schwartz, "Espaces de fonctions différentielles à valeurs vectorielles" J. d'Anal. Math. , 4 (1954–1955) pp. 88–148

Comments

References

[a1] F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)
[a2] L. Schwartz, "Théorie des distributions" , 1–2 , Hermann (1966)
How to Cite This Entry:
Nuclear bilinear form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nuclear_bilinear_form&oldid=16398
This article was adapted from an original article by G.L. Litvinov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article