Namespaces
Variants
Actions

Morera theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 30-XX Secondary: 32-XX [MSN][ZBL]

A fundamental theorem in complex analysis first proved by G. Morera in [Mo], which is an (incomplete) converse of the Cauchy integral theorem. The theorem states the following.

Theorem Let $D\subset \mathbb C$ be an open set and $f: D\to \mathbb C$ a continuous function. If the integral \begin{equation}\label{e:integral} \int_\gamma f(z)\, dz = 0 \end{equation} vanishes for every rectifiable contour $\gamma\subset D$, then the function $f$ is holomorphic.

The integral in \eqref{e:integral} must be understood in the sense of the usual integration of a $1$-form. In particular, if $z: [0,T]\to D$ is a Lipschitz parametrization of the contour $\gamma$, then the right hand side of \eqref{e:integral} is given by \[ \int_0^T f (z(t))\, \dot{z} (t)\, dt\, . \] Indeed the assumption of the theorem can be considerably weakened: to conclude that $f$ is holomorphic it suffices to know \eqref{e:integral} whenever $\gamma$ is the boundary of any triangle $\Delta\subset\subset D$.

Morera's theorem can be generalized to functions of several complex variables.

Theorem Let $D\subset \mathbb C^n$ be an open set and $f: D \to \mathbb C$ a continuous function. Denote by $f (z)\, dz$ the (complex) differential form \[ f (z)\, dz_1\wedge dz_2\wedge \ldots \wedge dz_n\, . \] Consider the class $\mathcal{P}$ of prismatic domains $\Gamma\subset\subset D$ of the form \[ [a_1, b_1] \times \ldots \times [a_{i-1}, b_{i-1}]\times \partial \Delta \times [a_{i+1}, b_{i+1}] \times \ldots \times [a_n b_n]\, , \] where $\Delta\subset \mathbb C$ is a arbitrary triangle, $a_k, b_k$ are complex numbers and $[a_k, b_k]$ denotes the segment $\sigma\subset \mathbb C$ given by $\{\lambda a_k + (1-\lambda b_k): \lambda \in [0,1]\}$. If \[ \int_\Gamma f(z)\, dz = 0\, \qquad\qquad \mbox{for any}\, \Gamma \in \mathcal{P}\, , \] then $f$ is holomorphic.

References

[Co] J.B. Conway, "Functions of one complex variable" , Springer (1973) MR0447532 Zbl 0277.30001
[Re] R. Remmert, "Funktionentheorie" , 1 , Springer (1984)
How to Cite This Entry:
Morera theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Morera_theorem&oldid=31239
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article