Namespaces
Variants
Actions

Difference between revisions of "Loop, analytic"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
An [[Analytic manifold|analytic manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608401.png" /> endowed with the structure of a [[Loop|loop]] whose basic operations (multiplication, left and right division) are analytic mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608402.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608403.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608404.png" /> is the identity of the loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608405.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608406.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608407.png" /> are analytic paths starting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608408.png" /> and having tangent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l0608409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084010.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084011.png" />, then the tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084013.png" /> to the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084014.png" />, where
+
{{TEX|done}}
 +
An [[Analytic manifold|analytic manifold]] $M$ endowed with the structure of a [[Loop|loop]] whose basic operations (multiplication, left and right division) are analytic mappings of $M\times M$ into $M$. If $e$ is the identity of the loop $M$, and $g(t)$ and $h(t)$ are analytic paths starting from $e$ and having tangent vectors $a$ and $b$ at $e$, then the tangent vector $c=ab$ at $e$ to the path $k(t)$, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084015.png" /></td> </tr></table>
+
$$k(t^2)=(g(t)h(t))/(h(t)g(t)),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084016.png" /> stands for right division, is a bilinear function of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084018.png" />. The tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084019.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084020.png" /> with the operation of multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084021.png" /> is called the tangent algebra of the loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084022.png" />. In some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084023.png" /> of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084024.png" /> the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084025.png" /> are said to be canonical of the first kind if for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084026.png" /> the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084027.png" /> is a local one-parameter subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084028.png" /> with tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084029.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084030.png" /> (see [[#References|[1]]]). A power-associative analytic loop (cf. [[Algebra with associative powers|Algebra with associative powers]]) has canonical coordinates of the first kind [[#References|[2]]]. In this case the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084031.png" />, defined for sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084032.png" />, makes it possible to identify <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084033.png" /> with a neighbourhood of the origin in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084034.png" /> and to endow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084035.png" /> with the structure of a local analytic loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084036.png" />. If an analytic loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084037.png" /> is alternative, that is, if any two elements of it generate a subgroup, then the tangent algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084038.png" /> is a [[Binary Lie algebra|binary Lie algebra]], and the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084039.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084040.png" /> can be expressed by the [[Campbell–Hausdorff formula|Campbell–Hausdorff formula]]. Any finite-dimensional binary Lie algebra over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084041.png" /> is the tangent algebra of one and only one (up to local isomorphisms) local alternative analytic loop [[#References|[1]]].
+
where $/$ stands for right division, is a bilinear function of the vectors $a$ and $b$. The tangent space $T(M)$ at $e$ with the operation of multiplication $c=ab$ is called the tangent algebra of the loop $M$. In some neighbourhood $U$ of the element $e=(0,\dots,0)$ the coordinates $(x^1,\dots,x^n)$ are said to be canonical of the first kind if for any vector $a=(a^1,\dots,a^n)$ the curve $x(t)=(a^1t,\dots,a^nt)$ is a local one-parameter subgroup $(|t|\leq\epsilon)$ with tangent vector $a$ at $e$ (see [[#References|[1]]]). A power-associative analytic loop (cf. [[Algebra with associative powers|Algebra with associative powers]]) has canonical coordinates of the first kind [[#References|[2]]]. In this case the mapping $a\to x(1)$, defined for sufficiently small $a$, makes it possible to identify $U$ with a neighbourhood of the origin in $T(M)$ and to endow $T(M)$ with the structure of a local analytic loop $M_0$. If an analytic loop $M$ is alternative, that is, if any two elements of it generate a subgroup, then the tangent algebra $T(M)$ is a [[Binary Lie algebra|binary Lie algebra]], and the multiplication $(x,y)\to x\circ y$ in $M_0$ can be expressed by the [[Campbell–Hausdorff formula|Campbell–Hausdorff formula]]. Any finite-dimensional binary Lie algebra over the field $\mathbf R$ is the tangent algebra of one and only one (up to local isomorphisms) local alternative analytic loop [[#References|[1]]].
  
 
The most fully studied are analytic Moufang loops (cf. [[Moufang loop|Moufang loop]]). The tangent algebra of an analytic Moufang loop satisfies the identities
 
The most fully studied are analytic Moufang loops (cf. [[Moufang loop|Moufang loop]]). The tangent algebra of an analytic Moufang loop satisfies the identities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084042.png" /></td> </tr></table>
+
$$x^2=0,\quad J(x,y,xz)=J(x,y,z)x,$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084043.png" /></td> </tr></table>
+
$$J(x,y,z)=(xy)z+(yz)x+(zx)y;$$
  
such algebras are called Mal'tsev algebras. Conversely, any finite-dimensional Mal'tsev algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084044.png" /> is the tangent algebra of a simply-connected analytic Moufang loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084045.png" />, defined uniquely up to an isomorphism (see [[#References|[2]]], [[#References|[3]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084046.png" /> is a connected analytic Moufang loop with the same tangent algebra, and hence is locally isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084047.png" />, then there is an epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084048.png" /> whose kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084049.png" /> is a discrete normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084050.png" />; the fundamental group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084051.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084052.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084053.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084054.png" /> is a local homomorphism of a simply-connected analytic Moufang loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084055.png" /> into a connected analytic Moufang loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084057.png" /> can be uniquely extended to a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084058.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084059.png" />. The space of a simply-connected analytic Moufang loop with solvable Mal'tsev tangent algebra is analytically isomorphic to the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060840/l06084060.png" /> (see [[#References|[3]]]).
+
such algebras are called Mal'tsev algebras. Conversely, any finite-dimensional Mal'tsev algebra over $\mathbf R$ is the tangent algebra of a simply-connected analytic Moufang loop $M$, defined uniquely up to an isomorphism (see [[#References|[2]]], [[#References|[3]]]). If $M'$ is a connected analytic Moufang loop with the same tangent algebra, and hence is locally isomorphic to $M$, then there is an epimorphism $M\to M'$ whose kernel $H$ is a discrete normal subgroup of $M$; the fundamental group $\pi(M')$ of the space $M'$ is isomorphic to $H$. If $\phi$ is a local homomorphism of a simply-connected analytic Moufang loop $M$ into a connected analytic Moufang loop $M'$, then $\phi$ can be uniquely extended to a homomorphism of $M$ into $M'$. The space of a simply-connected analytic Moufang loop with solvable Mal'tsev tangent algebra is analytically isomorphic to the Euclidean space $\mathbf R^n$ (see [[#References|[3]]]).
  
 
====References====
 
====References====

Latest revision as of 07:46, 20 August 2014

An analytic manifold $M$ endowed with the structure of a loop whose basic operations (multiplication, left and right division) are analytic mappings of $M\times M$ into $M$. If $e$ is the identity of the loop $M$, and $g(t)$ and $h(t)$ are analytic paths starting from $e$ and having tangent vectors $a$ and $b$ at $e$, then the tangent vector $c=ab$ at $e$ to the path $k(t)$, where

$$k(t^2)=(g(t)h(t))/(h(t)g(t)),$$

where $/$ stands for right division, is a bilinear function of the vectors $a$ and $b$. The tangent space $T(M)$ at $e$ with the operation of multiplication $c=ab$ is called the tangent algebra of the loop $M$. In some neighbourhood $U$ of the element $e=(0,\dots,0)$ the coordinates $(x^1,\dots,x^n)$ are said to be canonical of the first kind if for any vector $a=(a^1,\dots,a^n)$ the curve $x(t)=(a^1t,\dots,a^nt)$ is a local one-parameter subgroup $(|t|\leq\epsilon)$ with tangent vector $a$ at $e$ (see [1]). A power-associative analytic loop (cf. Algebra with associative powers) has canonical coordinates of the first kind [2]. In this case the mapping $a\to x(1)$, defined for sufficiently small $a$, makes it possible to identify $U$ with a neighbourhood of the origin in $T(M)$ and to endow $T(M)$ with the structure of a local analytic loop $M_0$. If an analytic loop $M$ is alternative, that is, if any two elements of it generate a subgroup, then the tangent algebra $T(M)$ is a binary Lie algebra, and the multiplication $(x,y)\to x\circ y$ in $M_0$ can be expressed by the Campbell–Hausdorff formula. Any finite-dimensional binary Lie algebra over the field $\mathbf R$ is the tangent algebra of one and only one (up to local isomorphisms) local alternative analytic loop [1].

The most fully studied are analytic Moufang loops (cf. Moufang loop). The tangent algebra of an analytic Moufang loop satisfies the identities

$$x^2=0,\quad J(x,y,xz)=J(x,y,z)x,$$

where

$$J(x,y,z)=(xy)z+(yz)x+(zx)y;$$

such algebras are called Mal'tsev algebras. Conversely, any finite-dimensional Mal'tsev algebra over $\mathbf R$ is the tangent algebra of a simply-connected analytic Moufang loop $M$, defined uniquely up to an isomorphism (see [2], [3]). If $M'$ is a connected analytic Moufang loop with the same tangent algebra, and hence is locally isomorphic to $M$, then there is an epimorphism $M\to M'$ whose kernel $H$ is a discrete normal subgroup of $M$; the fundamental group $\pi(M')$ of the space $M'$ is isomorphic to $H$. If $\phi$ is a local homomorphism of a simply-connected analytic Moufang loop $M$ into a connected analytic Moufang loop $M'$, then $\phi$ can be uniquely extended to a homomorphism of $M$ into $M'$. The space of a simply-connected analytic Moufang loop with solvable Mal'tsev tangent algebra is analytically isomorphic to the Euclidean space $\mathbf R^n$ (see [3]).

References

[1] A.I. Mal'tsev, "Analytic loops" Mat. Sb. , 36 : 3 (1955) pp. 569–578 (In Russian)
[2] E.N. Kuz'min, "On the relation between Mal'tsev algebras and analytic Moufang loops" Algebra and Logic , 10 : 1 (1971) pp. 1–14 Algebra i Logika , 10 : 1 (1971) pp. 3–22
[3] F.S. Kerdman, "On global analytic Moufang loops" Soviet Math. Dokl. , 20 (1979) pp. 1297–1300 Dokl. Akad. Nauk SSSR , 249 : 3 (1979) pp. 533–536


Comments

References

[a1] O. Chein (ed.) H. Pflugfelder (ed.) J.D.H. Smith (ed.) , Theory and application of quasigroups and loops , Heldermann (1989)
How to Cite This Entry:
Loop, analytic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Loop,_analytic&oldid=11829
This article was adapted from an original article by E.N. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article