Namespaces
Variants
Actions

Difference between revisions of "Liouville number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
A real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596501.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596502.png" /> the inequality
+
{{TEX|done}}
 +
A real number $\alpha$ such that for any $\nu\geq1$ the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596503.png" /></td> </tr></table>
+
$$\left|\alpha-\frac pq\right|<q^{-\nu}$$
  
has infinitely many integer solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596504.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596505.png" /> satisfying the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596506.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596507.png" />. The fact that a Liouville number is transcendental (cf. [[Transcendental number|Transcendental number]]) follows from the Liouville theorem (cf. [[Liouville theorems|Liouville theorems]]). These numbers were studied by J. Liouville [[#References|[1]]].
+
has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. [[Transcendental number|Transcendental number]]) follows from the Liouville theorem (cf. [[Liouville theorems|Liouville theorems]]). These numbers were studied by J. Liouville [[#References|[1]]].
  
 
Examples of Liouville numbers are:
 
Examples of Liouville numbers are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596508.png" /></td> </tr></table>
+
$$\alpha_1=\sum_{n=1}^\infty2^{-n!},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l0596509.png" /></td> </tr></table>
+
$$\alpha_2=\sum_{n=1}^\infty(-1)^n2^{-3^n},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059650/l05965010.png" /></td> </tr></table>
+
$$\alpha_3=\sum_{n=1}^\infty(10^{n!})^{-1}.$$
  
 
====References====
 
====References====

Revision as of 08:59, 27 July 2014

A real number $\alpha$ such that for any $\nu\geq1$ the inequality

$$\left|\alpha-\frac pq\right|<q^{-\nu}$$

has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. Transcendental number) follows from the Liouville theorem (cf. Liouville theorems). These numbers were studied by J. Liouville [1].

Examples of Liouville numbers are:

$$\alpha_1=\sum_{n=1}^\infty2^{-n!},$$

$$\alpha_2=\sum_{n=1}^\infty(-1)^n2^{-3^n},$$

$$\alpha_3=\sum_{n=1}^\infty(10^{n!})^{-1}.$$

References

[1] J. Liouville, "Sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" C.R. Acad. Sci. Paris , 18 (1844) pp. 883–885
[2] A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian)


Comments

References

[a1] O. Perron, "Die Lehre von den Kettenbrüchen" , 1 , Teubner (1977) pp. Sect. 35
[a2] O. Perron, "Irrationalzahlen" , Chelsea, reprint (1948)
How to Cite This Entry:
Liouville number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Liouville_number&oldid=15912
This article was adapted from an original article by S.V. Kotov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article