Namespaces
Variants
Actions

Difference between revisions of "Linearly-disjoint extensions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex,msc,refs)
Line 1: Line 1:
''of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595601.png" />''
 
  
Two subextensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595602.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595603.png" /> of an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595604.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595605.png" /> such that the subalgebra generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595606.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595607.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595608.png" /> is (isomorphic to) the [[Tensor product|tensor product]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595609.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956010.png" /> (cf. [[Extension of a field|Extension of a field]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956012.png" /> be arbitrary subrings of an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956014.png" />, containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956015.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956016.png" /> be the subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956017.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956019.png" />. There is always a ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956020.png" /> that associates with an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956023.png" />, the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956025.png" />. The algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956027.png" /> are said to be linearly disjoint over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956029.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956030.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956031.png" />. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956032.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956034.png" /> to be linearly disjoint over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956035.png" /> it is sufficient that there is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956036.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956037.png" /> that is independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956039.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956040.png" />, then the degree of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956041.png" /> does not exceed the degree of extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956042.png" /> and equality holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956044.png" /> are linearly disjoint.
+
{{TEX|done}}
 
+
{{MSC|12Fxx}}
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Algebra" , ''Elements of mathematics'' , '''1''' , Springer  (1988)  pp. Chapts. 4–7  (Translated from French)</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
  
 +
Two subextensions $A$ and $B$ of an extension $\def\O{\Omega}\O$ of $k$ are called linearly disjoint  if the
 +
subalgebra generated by $A$ and $B$ in $\O$ is (isomorphic to) the
 +
[[Tensor product|tensor product]] $A\otimes B$ over $k$ (cf.
 +
[[Extension of a field|Extension of a field]]). Let $A$ and $B$ be
 +
arbitrary subrings of an extension $\O$ of $k$, containing $k$, and let
 +
$C$ be the subring of $\O$ generated by $A$ and $B$. There is always a
 +
ring homomorphism $\phi:A\otimes B \to C$ that associates with an element $x\otimes y\in A\otimes B$, $x\in A$, $y\in B$,
 +
the product $xy$ in $C$. The algebras $A$ and $B$ are said to be
 +
linearly disjoint over $k$ if $\phi$ is an isomorphism of $A\otimes B$ onto
 +
$C$. In this case, $A\cap B = k$. For $A$ and $B$ to be linearly disjoint over
 +
$k$ it is sufficient that there is a basis of $B$ over $k$ that is
 +
independent over $A$. If $A$ is a finite extension of $k$, then the
 +
degree of the extension $[B(A):B]$ does not exceed the degree of extension
 +
$A:k$ and equality holds if and only if $A/k$ and $B/k$ are linearly
 +
disjoint.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"O. Zariski,   P. Samuel,   "Commutative algebra" , '''1''' , Springer (1975)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algebra", ''Elements of mathematics'', '''1''', Springer (1988) pp. Chapts. 4–7 (Translated from French)
 +
|-
 +
|valign="top"|{{Ref|ZaSa}}||valign="top"| O. Zariski, P. Samuel, "Commutative algebra", '''1''', Springer (1975)
 +
|-
 +
|}

Revision as of 22:10, 17 February 2012

2020 Mathematics Subject Classification: Primary: 12Fxx [MSN][ZBL]

Two subextensions $A$ and $B$ of an extension $\def\O{\Omega}\O$ of $k$ are called linearly disjoint if the subalgebra generated by $A$ and $B$ in $\O$ is (isomorphic to) the tensor product $A\otimes B$ over $k$ (cf. Extension of a field). Let $A$ and $B$ be arbitrary subrings of an extension $\O$ of $k$, containing $k$, and let $C$ be the subring of $\O$ generated by $A$ and $B$. There is always a ring homomorphism $\phi:A\otimes B \to C$ that associates with an element $x\otimes y\in A\otimes B$, $x\in A$, $y\in B$, the product $xy$ in $C$. The algebras $A$ and $B$ are said to be linearly disjoint over $k$ if $\phi$ is an isomorphism of $A\otimes B$ onto $C$. In this case, $A\cap B = k$. For $A$ and $B$ to be linearly disjoint over $k$ it is sufficient that there is a basis of $B$ over $k$ that is independent over $A$. If $A$ is a finite extension of $k$, then the degree of the extension $[B(A):B]$ does not exceed the degree of extension $A:k$ and equality holds if and only if $A/k$ and $B/k$ are linearly disjoint.

References

[Bo] N. Bourbaki, "Algebra", Elements of mathematics, 1, Springer (1988) pp. Chapts. 4–7 (Translated from French)
[ZaSa] O. Zariski, P. Samuel, "Commutative algebra", 1, Springer (1975)
How to Cite This Entry:
Linearly-disjoint extensions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linearly-disjoint_extensions&oldid=13138
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article