Namespaces
Variants
Actions

Difference between revisions of "Kronecker method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A method for factoring a polynomial with rational coefficients into irreducible factors over the field of rational numbers; proposed in 1882 by L. Kronecker [[#References|[1]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558801.png" /> be a common denominator of the coefficients of a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558802.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558803.png" /> is a polynomial with integer coefficients; moreover, any factorization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558804.png" /> into irreducible factors with rational coefficients leads to a factorization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558805.png" /> into irreducible factors with integer coefficients, whose factors differ from the corresponding factors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558806.png" /> only by constant factors, and vice versa.
+
{{TEX|done}}
 +
A method for factoring a polynomial with rational coefficients into irreducible factors over the field of rational numbers; proposed in 1882 by L. Kronecker [[#References|[1]]]. Let $d$ be a common denominator of the coefficients of a polynomial $\phi(x)$. Then $f(x)=d\phi(x)$ is a polynomial with integer coefficients; moreover, any factorization of $\phi(x)$ into irreducible factors with rational coefficients leads to a factorization of $f(x)$ into irreducible factors with integer coefficients, whose factors differ from the corresponding factors of $\phi(x)$ only by constant factors, and vice versa.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558807.png" /> be of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558808.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k0558809.png" /> be the largest natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588010.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588011.png" /> is a factorization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588012.png" /> into factors with integer coefficients, where the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588013.png" /> does not exceed that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588014.png" />, then the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588015.png" /> is at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588016.png" />. Assigning to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588017.png" /> any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588018.png" /> distinct integer values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588020.png" />, one obtains equalities
+
Let $f(x)$ be of degree $n>0$ and let $k$ be the largest natural number $\leq n/2$. If $f(x)=g(x)h(x)$ is a factorization of $f(x)$ into factors with integer coefficients, where the degree of $g(x)$ does not exceed that of $h(x)$, then the degree of $g(x)$ is at most $k$. Assigning to $x$ any $k+1$ distinct integer values $x=c_i$, $i=1,\dots,k+1$, one obtains equalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588021.png" /></td> </tr></table>
+
$$f(c_i)=g(c_i)h(c_i),\quad i=1,\dots,k+1,$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588023.png" /> are integers. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588024.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588025.png" />. Choosing arbitrary divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588026.png" /> of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588027.png" />, one obtains
+
where $g(c_i)$ and $h(c_i)$ are integers. Thus, $g(c_i)$ divides $f(c_i)$. Choosing arbitrary divisors $d_i$ of the numbers $f(c_i)$, one obtains
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588028.png" /></td> </tr></table>
+
$$g(c_i)=d_i,\quad i=1,\dots,k+1.$$
  
The polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588029.png" /> may now be determined from these equalities using the [[Lagrange interpolation formula|Lagrange interpolation formula]], or, more simply, by the equations for the coefficients. It is then checked whether the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588030.png" /> found in this way divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588031.png" />. This construction and the subsequent test are carried out for all possible choices of divisors of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588032.png" />.
+
The polynomial $g(x)$ may now be determined from these equalities using the [[Lagrange interpolation formula|Lagrange interpolation formula]], or, more simply, by the equations for the coefficients. It is then checked whether the polynomial $g(x)$ found in this way divides $f(x)$. This construction and the subsequent test are carried out for all possible choices of divisors of the numbers $f(c_i)$.
  
Subsequently, the same procedure is applied to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588034.png" />, etc., until one obtains irreducible factors.
+
Subsequently, the same procedure is applied to $g(x)$ and $h(x)$, etc., until one obtains irreducible factors.
  
The Kronecker method involves cumbersome computations. It may be simplified by first lowering the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588035.png" /> by removing its rational roots (see [[#References|[3]]]).
+
The Kronecker method involves cumbersome computations. It may be simplified by first lowering the degree of $f(x)$ by removing its rational roots (see [[#References|[3]]]).
  
Example. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588036.png" /> (this is a polynomial with integer coefficients and without rational roots). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588037.png" />, where the degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588039.png" /> is at most that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588041.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588042.png" />. With <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588045.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588046.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588047.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588048.png" />. The divisors of these numbers are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588049.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588050.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588051.png" />. In all one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588052.png" /> combinations. Since two combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588053.png" /> that differ only in sign yield the two polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588054.png" />, it will suffice to check only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588055.png" />. There remain 32 cases. Running through all these cases, one finds only one polynomial of degree 2 dividing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588056.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588057.png" />. Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055880/k05588058.png" />. Both factors are irreducible (as polynomials of degrees 2 and 3, respectively, without rational roots).
+
Example. $f(x)=x^5-x^4-2x^3-8x^2+6x-1$ (this is a polynomial with integer coefficients and without rational roots). If $f(x)=g(x)h(x)$, where the degree $k$ of $g(x)$ is at most that of $h(x)$, then $2\leq k<5/2$, i.e. $k=2$. With $c_1=0$, $c_2=1$, $c_3=2$ one has $f(0)=1$; $f(1)=-5$; $f(2)=-21$. The divisors of these numbers are $d_1=\pm1$; $d_2=\pm1,\pm5$; $d_3=\pm1,\pm3,\pm7,\pm21$. In all one has $2\cdot4\cdot8=64$ combinations. Since two combinations $d_i$ that differ only in sign yield the two polynomials $\pm g(x)$, it will suffice to check only $g(0)=+1$. There remain 32 cases. Running through all these cases, one finds only one polynomial of degree 2 dividing $f(x)$: $g(x)=x^2-3x+1$. Hence $f(x)=(x^2-3x+1)(x^3+2x^2+3x-1)$. Both factors are irreducible (as polynomials of degrees 2 and 3, respectively, without rational roots).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Grundzüge einer arithmetischen Theorie der algebraischen Grössen"  ''J. Reine Angew. Math.'' , '''92'''  (1882)  pp. 1–122</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.Ya. Okunev,  "Higher algebra" , Moscow  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Grundzüge einer arithmetischen Theorie der algebraischen Grössen"  ''J. Reine Angew. Math.'' , '''92'''  (1882)  pp. 1–122 {{ZBL|14.0038.02}}</TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  L.Ya. Okunev,  "Higher algebra" , Moscow  (1937)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR>
====Comments====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. van der Waerden,  "Algebra" , '''1–2''' , Springer  (1967–1971)  (Translated from German)</TD></TR>
 
+
</table>
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. van der Waerden,  "Algebra" , '''1–2''' , Springer  (1967–1971)  (Translated from German)</TD></TR></table>
 

Latest revision as of 18:14, 14 June 2023

A method for factoring a polynomial with rational coefficients into irreducible factors over the field of rational numbers; proposed in 1882 by L. Kronecker [1]. Let $d$ be a common denominator of the coefficients of a polynomial $\phi(x)$. Then $f(x)=d\phi(x)$ is a polynomial with integer coefficients; moreover, any factorization of $\phi(x)$ into irreducible factors with rational coefficients leads to a factorization of $f(x)$ into irreducible factors with integer coefficients, whose factors differ from the corresponding factors of $\phi(x)$ only by constant factors, and vice versa.

Let $f(x)$ be of degree $n>0$ and let $k$ be the largest natural number $\leq n/2$. If $f(x)=g(x)h(x)$ is a factorization of $f(x)$ into factors with integer coefficients, where the degree of $g(x)$ does not exceed that of $h(x)$, then the degree of $g(x)$ is at most $k$. Assigning to $x$ any $k+1$ distinct integer values $x=c_i$, $i=1,\dots,k+1$, one obtains equalities

$$f(c_i)=g(c_i)h(c_i),\quad i=1,\dots,k+1,$$

where $g(c_i)$ and $h(c_i)$ are integers. Thus, $g(c_i)$ divides $f(c_i)$. Choosing arbitrary divisors $d_i$ of the numbers $f(c_i)$, one obtains

$$g(c_i)=d_i,\quad i=1,\dots,k+1.$$

The polynomial $g(x)$ may now be determined from these equalities using the Lagrange interpolation formula, or, more simply, by the equations for the coefficients. It is then checked whether the polynomial $g(x)$ found in this way divides $f(x)$. This construction and the subsequent test are carried out for all possible choices of divisors of the numbers $f(c_i)$.

Subsequently, the same procedure is applied to $g(x)$ and $h(x)$, etc., until one obtains irreducible factors.

The Kronecker method involves cumbersome computations. It may be simplified by first lowering the degree of $f(x)$ by removing its rational roots (see [3]).

Example. $f(x)=x^5-x^4-2x^3-8x^2+6x-1$ (this is a polynomial with integer coefficients and without rational roots). If $f(x)=g(x)h(x)$, where the degree $k$ of $g(x)$ is at most that of $h(x)$, then $2\leq k<5/2$, i.e. $k=2$. With $c_1=0$, $c_2=1$, $c_3=2$ one has $f(0)=1$; $f(1)=-5$; $f(2)=-21$. The divisors of these numbers are $d_1=\pm1$; $d_2=\pm1,\pm5$; $d_3=\pm1,\pm3,\pm7,\pm21$. In all one has $2\cdot4\cdot8=64$ combinations. Since two combinations $d_i$ that differ only in sign yield the two polynomials $\pm g(x)$, it will suffice to check only $g(0)=+1$. There remain 32 cases. Running through all these cases, one finds only one polynomial of degree 2 dividing $f(x)$: $g(x)=x^2-3x+1$. Hence $f(x)=(x^2-3x+1)(x^3+2x^2+3x-1)$. Both factors are irreducible (as polynomials of degrees 2 and 3, respectively, without rational roots).

References

[1] L. Kronecker, "Grundzüge einer arithmetischen Theorie der algebraischen Grössen" J. Reine Angew. Math. , 92 (1882) pp. 1–122 Zbl 14.0038.02
[2] L.Ya. Okunev, "Higher algebra" , Moscow (1937) (In Russian)
[3] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)
[a1] B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German)
How to Cite This Entry:
Kronecker method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker_method&oldid=13124
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article