Namespaces
Variants
Actions

Difference between revisions of "Knot and link groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A class of groups isomorphic to the fundamental groups (cf. [[Fundamental group|Fundamental group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555801.png" /> of the complementary spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555802.png" /> of links (cf. [[Link|Link]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555803.png" /> of codimension two in the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555804.png" />.
+
<!--
 +
k0555801.png
 +
$#A+1 = 149 n = 0
 +
$#C+1 = 149 : ~/encyclopedia/old_files/data/K055/K.0505580 Knot and link groups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
For the cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555805.png" /> the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555806.png" /> of smooth links of multiplicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555807.png" /> are distinguished by the following properties [[#References|[3]]]: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555808.png" /> is generated as a normal subgroup by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k0555809.png" /> elements; 2) the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558010.png" />-dimensional homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558012.png" /> with integer coefficients and trivial action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558014.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558015.png" />; and 3) the quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558016.png" /> by its commutator subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558017.png" /> is a free Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558018.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558019.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558020.png" /> is the group of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558021.png" />, then 1) holds because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558022.png" /> becomes the trivial group after setting the meridian equal to 1 (see below), property 2) follows from Hopf's theorem, according to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558023.png" /> is a quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558024.png" />, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558025.png" /> by [[Alexander duality|Alexander duality]]; property 3) follows from the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558027.png" /> by Alexander duality.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558028.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558029.png" />, necessary and sufficient conditions have not yet been found (1984). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558030.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558031.png" /> does not split if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558032.png" /> is aspherical, i.e. is an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558033.png" />. A link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558034.png" /> splits if and only if the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558035.png" /> has a presentation with deficiency larger than one [[#References|[3]]]. The complement of a higher-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558036.png" /> link having more than one component is never aspherical, and the complement of a higher-dimensional knot can be aspherical only under the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558037.png" /> [[#References|[5]]]. Furthermore, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558038.png" /> every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558039.png" />-dimensional knot with aspherical complement is trivial. It is also known that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558040.png" /> a link is trivial if and only if its group is free [[#References|[3]]]. Suppose now that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558041.png" />. To obtain a presentation of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558042.png" /> by a general rule (cf. [[Fundamental group|Fundamental group]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558043.png" /> one forms a two-dimensional complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558044.png" /> containing the initial knot and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558045.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558046.png" />-chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558047.png" /> give a system of generators for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558048.png" /> and going around the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558049.png" />-chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558050.png" /> gives the relations. If one takes a cone over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558051.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558052.png" />, emanating from a point below the plane of projection, one obtains the upper Wirtinger presentation (cf. [[Knot and link diagrams|Knot and link diagrams]]). If for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558053.png" /> one takes the union of the black and white surfaces obtained from the diagram of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558054.png" /> (removing the exterior domain), one obtains the Dehn presentation.
+
A class of groups isomorphic to the fundamental groups (cf. [[Fundamental group|Fundamental group]]) $  G ( K) = \pi _ {1} ( M ( k) ) $
 +
of the complementary spaces  $  M ( k) = S  ^ {n} \setminus  k $
 +
of links (cf. [[Link|Link]]) k $
 +
of codimension two in the sphere  $  S  ^ {n} $.
  
The specification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558055.png" /> in the form of a closed braid (cf. [[Braid theory|Braid theory]]; [[Knot and link diagrams|Knot and link diagrams]]) leads to a presentation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558056.png" /> in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558058.png" /> is a word over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558059.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558060.png" /> in the free group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558061.png" />. In addition, every presentation of this type is obtained from a closed braid. For other presentations see [[#References|[1]]], [[#References|[2]]], [[#References|[4]]], [[#References|[7]]], [[#References|[8]]]. Comparison of the upper and lower Wirtinger presentations leads to a particular kind of duality in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558062.png" /> (cf. [[#References|[7]]]). This may be formulated in terms of a Fox calculus: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558063.png" /> has two presentations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558065.png" /> such that for a certain equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558066.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558068.png" />, where the equations are taken modulo the kernel of the homomorphism of the group ring of the free group onto the group ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558069.png" />. This duality implies the symmetry of the Alexander invariant (cf. [[Alexander invariants|Alexander invariants]]).
+
For the cases  $  n \geq  5 $
 +
the groups  $  G $
 +
of smooth links of multiplicity  $  \mu $
 +
are distinguished by the following properties [[#References|[3]]]: 1)  $  G $
 +
is generated as a normal subgroup by  $  \mu $
 +
elements; 2) the  $  2 $-
 +
dimensional homology group  $  H _ {2} ( G ; \mathbf Z ) $
 +
of  $  G $
 +
with integer coefficients and trivial action of  $  G $
 +
on  $  \mathbf Z $
 +
is  $  0 $;
 +
and 3) the quotient group of  $  G $
 +
by its commutator subgroup  $  G  ^  \prime  $
 +
is a free Abelian group  $  J  ^  \mu  $
 +
of rank  $  \mu $.  
 +
If  $  G $
 +
is the group of the link  $  k $,  
 +
then 1) holds because  $  G $
 +
becomes the trivial group after setting the meridian equal to 1 (see below), property 2) follows from Hopf's theorem, according to which  $  H  ^ {2} ( G ;  \mathbf Z ) $
 +
is a quotient group of $  H  ^ {2} ( M ( k) ;  \mathbf Z ) $,
 +
equal to  $  0 $
 +
by [[Alexander duality|Alexander duality]]; property 3) follows from the fact that $  G / G  ^  \prime  \approx H _ {1} ( M( k) ;  \mathbf Z ) $
 +
and $  H _ {1} ( M ( k) ;  \mathbf Z ) = J  ^  \mu  $
 +
by Alexander duality.
  
The identity problem has been solved only for isolated classes of knots (e.g. torus and some pretzel-like knots, cf. [[#References|[6]]], etc.). There is no algorithm (cf. [[#References|[1]]]) for recognizing the groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558070.png" />-dimensional knots from their presentation. Stronger invariants for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558071.png" /> are the group systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558072.png" /> consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558073.png" /> and systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558074.png" /> of classes of conjugate subgroups. A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558075.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558076.png" /> is called a peripheral subgroup of the component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558077.png" />; it is the image under the imbedding homomorphism of the fundamental group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558078.png" /> the boundary of which is a regular neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558079.png" /> of the component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558080.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558081.png" /> is not the trivial knot, separated from the other components of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558082.png" />-sphere, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558083.png" />. The meridian and the parallel in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558084.png" /> generate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558085.png" /> two elements which are also called the meridian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558086.png" /> and the parallel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558087.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558088.png" /> in the group system. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558089.png" /> the parallel is uniquely determined for the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558090.png" /> itself in the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558091.png" />, but the meridian is only determined up to a factor of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558092.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558093.png" /> as an invariant see [[Knot theory|Knot theory]]. The automorphism group of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558094.png" /> has been completely studied only for torus links, for Listing knots (cf. [[Listing knot|Listing knot]]) and, to a higher degree, for Neuwirth knots (cf. [[Neuwirth knot|Neuwirth knot]], [[#References|[2]]]). The representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558095.png" /> in different groups, especially with regard to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558096.png" />, is a powerful means of distinguishing knots. E.g., the representation in the group of motions of the Lobachevskii plane allows one to describe the non-invertible knots. Metacyclic representations have been studied systematically.
+
In the case  $  n = 3 $
 +
or  $  4 $,
 +
necessary and sufficient conditions have not yet been found (1984). If  $  n = 3 $,
 +
then  $  k $
 +
does not split if and only if  $  M ( k) $
 +
is aspherical, i.e. is an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] of type  $  K ( G , 1) $.  
 +
A link  $  k $
 +
splits if and only if the group  $  G $
 +
has a presentation with deficiency larger than one [[#References|[3]]]. The complement of a higher-dimensional  $  ( n \geq  4 ) $
 +
link having more than one component is never aspherical, and the complement of a higher-dimensional knot can be aspherical only under the condition  $  G \approx \mathbf Z $[[#References|[5]]]. Furthermore, for $  n \geq  6 $
 +
every  $  n $-
 +
dimensional knot with aspherical complement is trivial. It is also known that for $  n = 3 $
 +
a link is trivial if and only if its group is free [[#References|[3]]]. Suppose now that  $  n = 3 $.  
 +
To obtain a presentation of the group  $  G ( k) $
 +
by a general rule (cf. [[Fundamental group|Fundamental group]]) in $  S  ^ {3} $
 +
one forms a two-dimensional complex  $  K $
 +
containing the initial knot and such that  $  \pi _ {1} ( S  ^ {3} - K ) = 1 $.  
 +
Then the $  2 $-
 +
chains of $  K $
 +
give a system of generators for  $  G ( k) $
 +
and going around the $  1 $-
 +
chains in $  K \setminus  k $
 +
gives the relations. If one takes a cone over  $  k $
 +
for $  K $,  
 +
emanating from a point below the plane of projection, one obtains the upper Wirtinger presentation (cf. [[Knot and link diagrams|Knot and link diagrams]]). If for  $  K $
 +
one takes the union of the black and white surfaces obtained from the diagram of $  k $(
 +
removing the exterior domain), one obtains the Dehn presentation.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558097.png" /> does not split, then for a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558098.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558099.png" /> a space of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580100.png" /> is used as a covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580101.png" /> which, like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580102.png" />, has the [[Homotopy type|homotopy type]] of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580103.png" />-dimensional complex. It follows that an Abelian subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580104.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580105.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580106.png" />; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580107.png" /> contains no non-trivial elements of finite order. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580108.png" /> the peripheral subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580109.png" /> are maximal in the set of Abelian subgroups. Only the group of a toroidal link can have a centre [[#References|[10]]]. A fundamental role is played by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580110.png" /> containing the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580111.png" /> whose link coefficients with the union of the oriented components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580112.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580113.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580114.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580115.png" /> is the commutator subgroup; generally <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580116.png" />. Therefore <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580117.png" /> may be taken as group of a covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580118.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580119.png" /> with infinite cyclic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580120.png" /> of covering transformations. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580121.png" /> is a connected oriented surface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580122.png" /> with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580123.png" />, then it is covered in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580124.png" /> by a countable system of surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580125.png" />, which decompose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580126.png" /> into a countable number of pieces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580127.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580128.png" />). Hence one obtains that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580129.png" /> is the limit of the diagram
+
The specification of k $
 +
in the form of a closed braid (cf. [[Braid theory|Braid theory]]; [[Knot and link diagrams|Knot and link diagrams]]) leads to a presentation of $  G ( k) $
 +
in the form  $  \{ {s _ {i} } : {s _ {i} = L _ {i} s _ {k} L _ {i}  ^ {-1} } \} $,
 +
where  $  L _ {1} $
 +
is a word over the alphabet  $  s _ {i} , s _ {i}  ^ {-1} $,  
 +
and  $  \prod_{i=1}^ {N} ( L _ {i} s _ {k} L _ {i}  ^ {-1} ) = \prod_{i=1}^ {N} s _ {i} $
 +
in the free group  $  \{ s _ {i} \} $.  
 +
In addition, every presentation of this type is obtained from a closed braid. For other presentations see [[#References|[1]]], [[#References|[2]]], [[#References|[4]]], [[#References|[7]]], [[#References|[8]]]. Comparison of the upper and lower Wirtinger presentations leads to a particular kind of duality in  $  G ( k) $(
 +
cf. [[#References|[7]]]). This may be formulated in terms of a Fox calculus: $  G ( k) $
 +
has two presentations  $  ( x _ {i} ;  r _ {j} ) $
 +
and  $  ( y _ {i} ;  s _ {j} ) $
 +
such that for a certain equivalence  $  \theta : ( x _ {i} ;  r _ {j} ) \rightarrow ( y _ {i} ;  s _ {j} ) $
 +
one has  $  \theta x _ {i} \equiv y _ {i}  ^ {-1} $
 +
and  $  \theta ( \partial  r _ {i} / \partial  x _ {j} ) ( x _ {j} - 1 ) \equiv ( \partial  s _ {j} / \partial  y _ {j} )( y _ {i} - 1 ) $,
 +
where the equations are taken modulo the kernel of the homomorphism of the group ring of the free group onto the group ring of $  G / G  ^  \prime  $.  
 +
This duality implies the symmetry of the Alexander invariant (cf. [[Alexander invariants|Alexander invariants]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580130.png" /></td> </tr></table>
+
The identity problem has been solved only for isolated classes of knots (e.g. torus and some pretzel-like knots, cf. [[#References|[6]]], etc.). There is no algorithm (cf. [[#References|[1]]]) for recognizing the groups of  $  3 $-
 +
dimensional knots from their presentation. Stronger invariants for  $  k $
 +
are the group systems  $  \langle  G , T _ {i} \rangle $
 +
consisting of  $  G ( k) $
 +
and systems  $  T _ {i} $
 +
of classes of conjugate subgroups. A subgroup  $  S _ {i} $
 +
in  $  T _ {i} $
 +
is called a peripheral subgroup of the component  $  k _ {i} $;  
 +
it is the image under the imbedding homomorphism of the fundamental group  $  \pi _ {1} ( \partial  N ( k _ {i} ) ) $
 +
the boundary of which is a regular neighbourhood  $  N ( k _ {i} ) $
 +
of the component  $  k _ {i} \subset  k $.
 +
If  $  k _ {i} $
 +
is not the trivial knot, separated from the other components of the  $  2 $-
 +
sphere, then  $  s _ {i} \approx \pi _ {1} ( \partial  N ( k _ {i} ) ) $.
 +
The meridian and the parallel in  $  \partial  N ( k _ {i} ) $
 +
generate in  $  S _ {i} $
 +
two elements which are also called the meridian  $  m _ {i} $
 +
and the parallel  $  l _ {i} $
 +
for  $  k _ {i} $
 +
in the group system. In the case  $  \mu = 1 $
 +
the parallel is uniquely determined for the group  $  G $
 +
itself in the subgroup  $  S _ {i} $,
 +
but the meridian is only determined up to a factor of the form  $  l _ {i}  ^ {n} $.
 +
For  $  \langle  G _ {i} , T _ {i} \rangle $
 +
as an invariant see [[Knot theory|Knot theory]]. The automorphism group of the group  $  G $
 +
has been completely studied only for torus links, for Listing knots (cf. [[Listing knot|Listing knot]]) and, to a higher degree, for Neuwirth knots (cf. [[Neuwirth knot|Neuwirth knot]], [[#References|[2]]]). The representation of  $  G $
 +
in different groups, especially with regard to  $  \langle  G , T _ {i} \rangle $,
 +
is a powerful means of distinguishing knots. E.g., the representation in the group of motions of the Lobachevskii plane allows one to describe the non-invertible knots. Metacyclic representations have been studied systematically.
  
where all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580132.png" /> are induced inclusions. It turns out that either they are all isomorphisms or no two are epimorphisms [[#References|[2]]]. If the genus of a connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580133.png" /> is equal to the genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580134.png" /> of its link (such a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580135.png" /> is called completely non-split), then all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580136.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580137.png" /> are monomorphisms and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580138.png" /> is either a free group of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580139.png" /> or is not finitely generated (and not free, if the reduced Alexander polynomial is not zero; this is so for knots, in particular). A completely non-split link with finitely generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580140.png" /> is called a Neuwirth link.
+
If  $  k $
 +
does not split, then for a subgroup  $  F $
 +
of  $  G ( k) $
 +
a space of type  $  K ( F ;  1 ) $
 +
is used as a covering of  $  M $
 +
which, like  $  M $,
 +
has the [[Homotopy type|homotopy type]] of a  $  2 $-
 +
dimensional complex. It follows that an Abelian subgroup of  $  G ( k) $
 +
is isomorphic to  $  J $
 +
or  $  J \oplus J $;
 +
in particular,  $  G ( k) $
 +
contains no non-trivial elements of finite order. For  $  \mu = 1 $
 +
the peripheral subgroups  $  S _ {i} $
 +
are maximal in the set of Abelian subgroups. Only the group of a toroidal link can have a centre [[#References|[10]]]. A fundamental role is played by the subgroup  $  L ( k) $
 +
containing the elements of  $  G ( k) $
 +
whose link coefficients with the union of the oriented components  $  k _ {i} $
 +
are  $  0 $.
 +
If  $  \mu = 1 $,
 +
then  $  L ( k) $
 +
is the commutator subgroup; generally  $  G ( k) / L ( k) \approx J $.  
 +
Therefore  $  L ( k) $
 +
may be taken as group of a covering  $  \widetilde{M}  _ {0} $
 +
over  $  M ( k) $
 +
with infinite cyclic group  $  J $
 +
of covering transformations. If  $  F ( k) $
 +
is a connected oriented surface in  $  S  ^ {3} $
 +
with boundary  $  k $,
 +
then it is covered in  $  \widetilde{M}  _ {0} $
 +
by a countable system of surfaces  $  \widetilde{F}  _ {j} $,  
 +
which decompose  $  \widetilde{M}  _ {0} $
 +
into a countable number of pieces  $  M _ {j} $(
 +
where  $  \partial  M _ {j} = F _ {j} \cup F _ {j+1} $).  
 +
Hence one obtains that  $  L ( k) $
 +
is the limit of the diagram
 +
 
 +
$$
 +
\dots \leftarrow ^ { {i _ {j}  * } } \
 +
\pi _ {1} F _ {j} \
 +
\rightarrow ^ { {i _ {j}  * } } \
 +
\pi _ {1} M _ {j} \
 +
\leftarrow ^ { {i _ {j}  + 1 * }  ^  \prime  } \
 +
\pi _ {1} F _ {j+1} \
 +
\leftarrow ^ { {i _ {j}  + 1 * } } \dots ,
 +
$$
 +
 
 +
where all the  $  i _ {j * }  $,
 +
$  i _ {j * }  ^  \prime  $
 +
are induced inclusions. It turns out that either they are all isomorphisms or no two are epimorphisms [[#References|[2]]]. If the genus of a connected $  F ( k) $
 +
is equal to the genus $  \gamma ( k) $
 +
of its link (such a k $
 +
is called completely non-split), then all the $  i _ {j * }  $,  
 +
$  i _ {j * }  ^  \prime  $
 +
are monomorphisms and $  L ( k) $
 +
is either a free group of rank $  2 \gamma + \mu - 1 $
 +
or is not finitely generated (and not free, if the reduced Alexander polynomial is not zero; this is so for knots, in particular). A completely non-split link with finitely generated $  L ( k) $
 +
is called a Neuwirth link.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.H. Crowell,  R.H. Fox,  "Introduction to knot theory" , Ginn  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.P. Neuwirth,  "Knot groups" , Princeton Univ. Press  (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Hillman,  "Alexander ideals of links" , Springer  (1981)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C.McA. Gordon,  "Some aspects of clasical knot theory" , ''Knot theory. Proc. Sem. Plans-sur-Bex, 1977'' , ''Lect. notes in math.'' , '''685''' , Springer  (1978)  pp. 1–60</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B. Eckmann,  "Aspherical manifolds and higher-dimensional knots"  ''Comm. Math. Helv.'' , '''51'''  (1976)  pp. 93–98</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Reidemeister,  "Ueber Knotengruppen"  ''Abh. Math. Sem. Univ. Hamburg'' , '''6'''  (1928)  pp. 56–64</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  G. Hotz,  "Arkandenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe"  ''Abh. Math. Sem. Univ. Hamburg'' , '''24'''  (1960)  pp. 132–148</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  H.F. Trotter,  "Homology of group systems with applications to knot theory"  ''Ann. of Math.'' , '''76'''  (1962)  pp. 464–498</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  H.F. Trotter,  "Non-invertible knots exist"  ''Topology'' , '''2'''  (1964)  pp. 275–280</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  G. Burde,  H. Zieschang,  "Eine Kennzeichnung der Torusknotten"  ''Math. Ann.'' , '''167'''  (1966)  pp. 169–176</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.H. Crowell,  R.H. Fox,  "Introduction to knot theory" , Ginn  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.P. Neuwirth,  "Knot groups" , Princeton Univ. Press  (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Hillman,  "Alexander ideals of links" , Springer  (1981)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C.McA. Gordon,  "Some aspects of clasical knot theory" , ''Knot theory. Proc. Sem. Plans-sur-Bex, 1977'' , ''Lect. notes in math.'' , '''685''' , Springer  (1978)  pp. 1–60</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B. Eckmann,  "Aspherical manifolds and higher-dimensional knots"  ''Comm. Math. Helv.'' , '''51'''  (1976)  pp. 93–98</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Reidemeister,  "Ueber Knotengruppen"  ''Abh. Math. Sem. Univ. Hamburg'' , '''6'''  (1928)  pp. 56–64</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  G. Hotz,  "Arkandenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe"  ''Abh. Math. Sem. Univ. Hamburg'' , '''24'''  (1960)  pp. 132–148</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  H.F. Trotter,  "Homology of group systems with applications to knot theory"  ''Ann. of Math.'' , '''76'''  (1962)  pp. 464–498</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  H.F. Trotter,  "Non-invertible knots exist"  ''Topology'' , '''2'''  (1964)  pp. 275–280</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  G. Burde,  H. Zieschang,  "Eine Kennzeichnung der Torusknotten"  ''Math. Ann.'' , '''167'''  (1966)  pp. 169–176</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580141.png" />-link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580142.png" /> is splittable if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580143.png" />-sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580144.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580145.png" /> meets each of the two components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580146.png" />.
+
An $n$-link $L \subset S^{n+2}$
 +
is splittable if there is an $(n + 1)$-sphere $S  ^ {n+ 1} \subseteq S  ^ {n+ 2} \setminus  L $
 +
such that $L$ meets each of the two components of $  S  ^ {n+ 2} \setminus  S^{n+1}$.
  
The deficiency of a presentation of a group by means of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580147.png" /> and relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580148.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580149.png" />, [[#References|[a1]]].
+
The deficiency of a presentation of a group by means of generators $x_{1} \dots x_{n}$
 +
and relations $r_{1} \dots r_{m}$ is $n - m$, [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.E. Schapp,  "Combinatorial group theory" , Springer  (1977)  pp. Chapt. II, Sect. 2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.H. Kauffman,  "On knots" , Princeton Univ. Press  (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.S. Birman,  "Braids, links and mapping class groups" , Princeton Univ. Press  (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. Rolfsen,  "Knots and links" , Publish or Perish  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.E. Schapp,  "Combinatorial group theory" , Springer  (1977)  pp. Chapt. II, Sect. 2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.H. Kauffman,  "On knots" , Princeton Univ. Press  (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.S. Birman,  "Braids, links and mapping class groups" , Princeton Univ. Press  (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. Rolfsen,  "Knots and links" , Publish or Perish  (1976)</TD></TR></table>

Latest revision as of 18:41, 13 January 2024


A class of groups isomorphic to the fundamental groups (cf. Fundamental group) $ G ( K) = \pi _ {1} ( M ( k) ) $ of the complementary spaces $ M ( k) = S ^ {n} \setminus k $ of links (cf. Link) $ k $ of codimension two in the sphere $ S ^ {n} $.

For the cases $ n \geq 5 $ the groups $ G $ of smooth links of multiplicity $ \mu $ are distinguished by the following properties [3]: 1) $ G $ is generated as a normal subgroup by $ \mu $ elements; 2) the $ 2 $- dimensional homology group $ H _ {2} ( G ; \mathbf Z ) $ of $ G $ with integer coefficients and trivial action of $ G $ on $ \mathbf Z $ is $ 0 $; and 3) the quotient group of $ G $ by its commutator subgroup $ G ^ \prime $ is a free Abelian group $ J ^ \mu $ of rank $ \mu $. If $ G $ is the group of the link $ k $, then 1) holds because $ G $ becomes the trivial group after setting the meridian equal to 1 (see below), property 2) follows from Hopf's theorem, according to which $ H ^ {2} ( G ; \mathbf Z ) $ is a quotient group of $ H ^ {2} ( M ( k) ; \mathbf Z ) $, equal to $ 0 $ by Alexander duality; property 3) follows from the fact that $ G / G ^ \prime \approx H _ {1} ( M( k) ; \mathbf Z ) $ and $ H _ {1} ( M ( k) ; \mathbf Z ) = J ^ \mu $ by Alexander duality.

In the case $ n = 3 $ or $ 4 $, necessary and sufficient conditions have not yet been found (1984). If $ n = 3 $, then $ k $ does not split if and only if $ M ( k) $ is aspherical, i.e. is an Eilenberg–MacLane space of type $ K ( G , 1) $. A link $ k $ splits if and only if the group $ G $ has a presentation with deficiency larger than one [3]. The complement of a higher-dimensional $ ( n \geq 4 ) $ link having more than one component is never aspherical, and the complement of a higher-dimensional knot can be aspherical only under the condition $ G \approx \mathbf Z $[5]. Furthermore, for $ n \geq 6 $ every $ n $- dimensional knot with aspherical complement is trivial. It is also known that for $ n = 3 $ a link is trivial if and only if its group is free [3]. Suppose now that $ n = 3 $. To obtain a presentation of the group $ G ( k) $ by a general rule (cf. Fundamental group) in $ S ^ {3} $ one forms a two-dimensional complex $ K $ containing the initial knot and such that $ \pi _ {1} ( S ^ {3} - K ) = 1 $. Then the $ 2 $- chains of $ K $ give a system of generators for $ G ( k) $ and going around the $ 1 $- chains in $ K \setminus k $ gives the relations. If one takes a cone over $ k $ for $ K $, emanating from a point below the plane of projection, one obtains the upper Wirtinger presentation (cf. Knot and link diagrams). If for $ K $ one takes the union of the black and white surfaces obtained from the diagram of $ k $( removing the exterior domain), one obtains the Dehn presentation.

The specification of $ k $ in the form of a closed braid (cf. Braid theory; Knot and link diagrams) leads to a presentation of $ G ( k) $ in the form $ \{ {s _ {i} } : {s _ {i} = L _ {i} s _ {k} L _ {i} ^ {-1} } \} $, where $ L _ {1} $ is a word over the alphabet $ s _ {i} , s _ {i} ^ {-1} $, and $ \prod_{i=1}^ {N} ( L _ {i} s _ {k} L _ {i} ^ {-1} ) = \prod_{i=1}^ {N} s _ {i} $ in the free group $ \{ s _ {i} \} $. In addition, every presentation of this type is obtained from a closed braid. For other presentations see [1], [2], [4], [7], [8]. Comparison of the upper and lower Wirtinger presentations leads to a particular kind of duality in $ G ( k) $( cf. [7]). This may be formulated in terms of a Fox calculus: $ G ( k) $ has two presentations $ ( x _ {i} ; r _ {j} ) $ and $ ( y _ {i} ; s _ {j} ) $ such that for a certain equivalence $ \theta : ( x _ {i} ; r _ {j} ) \rightarrow ( y _ {i} ; s _ {j} ) $ one has $ \theta x _ {i} \equiv y _ {i} ^ {-1} $ and $ \theta ( \partial r _ {i} / \partial x _ {j} ) ( x _ {j} - 1 ) \equiv ( \partial s _ {j} / \partial y _ {j} )( y _ {i} - 1 ) $, where the equations are taken modulo the kernel of the homomorphism of the group ring of the free group onto the group ring of $ G / G ^ \prime $. This duality implies the symmetry of the Alexander invariant (cf. Alexander invariants).

The identity problem has been solved only for isolated classes of knots (e.g. torus and some pretzel-like knots, cf. [6], etc.). There is no algorithm (cf. [1]) for recognizing the groups of $ 3 $- dimensional knots from their presentation. Stronger invariants for $ k $ are the group systems $ \langle G , T _ {i} \rangle $ consisting of $ G ( k) $ and systems $ T _ {i} $ of classes of conjugate subgroups. A subgroup $ S _ {i} $ in $ T _ {i} $ is called a peripheral subgroup of the component $ k _ {i} $; it is the image under the imbedding homomorphism of the fundamental group $ \pi _ {1} ( \partial N ( k _ {i} ) ) $ the boundary of which is a regular neighbourhood $ N ( k _ {i} ) $ of the component $ k _ {i} \subset k $. If $ k _ {i} $ is not the trivial knot, separated from the other components of the $ 2 $- sphere, then $ s _ {i} \approx \pi _ {1} ( \partial N ( k _ {i} ) ) $. The meridian and the parallel in $ \partial N ( k _ {i} ) $ generate in $ S _ {i} $ two elements which are also called the meridian $ m _ {i} $ and the parallel $ l _ {i} $ for $ k _ {i} $ in the group system. In the case $ \mu = 1 $ the parallel is uniquely determined for the group $ G $ itself in the subgroup $ S _ {i} $, but the meridian is only determined up to a factor of the form $ l _ {i} ^ {n} $. For $ \langle G _ {i} , T _ {i} \rangle $ as an invariant see Knot theory. The automorphism group of the group $ G $ has been completely studied only for torus links, for Listing knots (cf. Listing knot) and, to a higher degree, for Neuwirth knots (cf. Neuwirth knot, [2]). The representation of $ G $ in different groups, especially with regard to $ \langle G , T _ {i} \rangle $, is a powerful means of distinguishing knots. E.g., the representation in the group of motions of the Lobachevskii plane allows one to describe the non-invertible knots. Metacyclic representations have been studied systematically.

If $ k $ does not split, then for a subgroup $ F $ of $ G ( k) $ a space of type $ K ( F ; 1 ) $ is used as a covering of $ M $ which, like $ M $, has the homotopy type of a $ 2 $- dimensional complex. It follows that an Abelian subgroup of $ G ( k) $ is isomorphic to $ J $ or $ J \oplus J $; in particular, $ G ( k) $ contains no non-trivial elements of finite order. For $ \mu = 1 $ the peripheral subgroups $ S _ {i} $ are maximal in the set of Abelian subgroups. Only the group of a toroidal link can have a centre [10]. A fundamental role is played by the subgroup $ L ( k) $ containing the elements of $ G ( k) $ whose link coefficients with the union of the oriented components $ k _ {i} $ are $ 0 $. If $ \mu = 1 $, then $ L ( k) $ is the commutator subgroup; generally $ G ( k) / L ( k) \approx J $. Therefore $ L ( k) $ may be taken as group of a covering $ \widetilde{M} _ {0} $ over $ M ( k) $ with infinite cyclic group $ J $ of covering transformations. If $ F ( k) $ is a connected oriented surface in $ S ^ {3} $ with boundary $ k $, then it is covered in $ \widetilde{M} _ {0} $ by a countable system of surfaces $ \widetilde{F} _ {j} $, which decompose $ \widetilde{M} _ {0} $ into a countable number of pieces $ M _ {j} $( where $ \partial M _ {j} = F _ {j} \cup F _ {j+1} $). Hence one obtains that $ L ( k) $ is the limit of the diagram

$$ \dots \leftarrow ^ { {i _ {j} * } } \ \pi _ {1} F _ {j} \ \rightarrow ^ { {i _ {j} * } } \ \pi _ {1} M _ {j} \ \leftarrow ^ { {i _ {j} + 1 * } ^ \prime } \ \pi _ {1} F _ {j+1} \ \leftarrow ^ { {i _ {j} + 1 * } } \dots , $$

where all the $ i _ {j * } $, $ i _ {j * } ^ \prime $ are induced inclusions. It turns out that either they are all isomorphisms or no two are epimorphisms [2]. If the genus of a connected $ F ( k) $ is equal to the genus $ \gamma ( k) $ of its link (such a $ k $ is called completely non-split), then all the $ i _ {j * } $, $ i _ {j * } ^ \prime $ are monomorphisms and $ L ( k) $ is either a free group of rank $ 2 \gamma + \mu - 1 $ or is not finitely generated (and not free, if the reduced Alexander polynomial is not zero; this is so for knots, in particular). A completely non-split link with finitely generated $ L ( k) $ is called a Neuwirth link.

References

[1] R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)
[2] L.P. Neuwirth, "Knot groups" , Princeton Univ. Press (1965)
[3] J.A. Hillman, "Alexander ideals of links" , Springer (1981)
[4] C.McA. Gordon, "Some aspects of clasical knot theory" , Knot theory. Proc. Sem. Plans-sur-Bex, 1977 , Lect. notes in math. , 685 , Springer (1978) pp. 1–60
[5] B. Eckmann, "Aspherical manifolds and higher-dimensional knots" Comm. Math. Helv. , 51 (1976) pp. 93–98
[6] K. Reidemeister, "Ueber Knotengruppen" Abh. Math. Sem. Univ. Hamburg , 6 (1928) pp. 56–64
[7] G. Hotz, "Arkandenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe" Abh. Math. Sem. Univ. Hamburg , 24 (1960) pp. 132–148
[8] H.F. Trotter, "Homology of group systems with applications to knot theory" Ann. of Math. , 76 (1962) pp. 464–498
[9] H.F. Trotter, "Non-invertible knots exist" Topology , 2 (1964) pp. 275–280
[10] G. Burde, H. Zieschang, "Eine Kennzeichnung der Torusknotten" Math. Ann. , 167 (1966) pp. 169–176

Comments

An $n$-link $L \subset S^{n+2}$ is splittable if there is an $(n + 1)$-sphere $S ^ {n+ 1} \subseteq S ^ {n+ 2} \setminus L $ such that $L$ meets each of the two components of $ S ^ {n+ 2} \setminus S^{n+1}$.

The deficiency of a presentation of a group by means of generators $x_{1} \dots x_{n}$ and relations $r_{1} \dots r_{m}$ is $n - m$, [a1].

References

[a1] P.E. Schapp, "Combinatorial group theory" , Springer (1977) pp. Chapt. II, Sect. 2
[a2] L.H. Kauffman, "On knots" , Princeton Univ. Press (1987)
[a3] J.S. Birman, "Braids, links and mapping class groups" , Princeton Univ. Press (1974)
[a4] D. Rolfsen, "Knots and links" , Publish or Perish (1976)
How to Cite This Entry:
Knot and link groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Knot_and_link_groups&oldid=11681
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article