Namespaces
Variants
Actions

Karamata theory

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The basic form of the theory of regular variation, a subject initiated in 1930 by the Yugoslav mathematician J. Karamata.

Viewed from a modern perspective, Karamata theory is the study of asymptotic relations of the form

$$ \tag{a1 } { \frac{f ( \lambda x ) }{f ( x ) } } \rightarrow g ( \lambda ) \in ( 0, \infty ) ( x \rightarrow \infty ) , \forall \lambda > 0, $$

together with their consequences and ramifications. The case $ g \equiv 1 $ is particularly important; measurable functions $ f $ satisfying (a1) with $ g \equiv 1 $ are called slowly varying; such slowly varying functions are often written $ L $ or $ {\mathcal l} $( for "lente" ).

Many useful and interesting properties are implied by such relations. For instance:

i) The uniform convergence theorem: for $ f $ slowly varying, (a1) holds uniformly on compact $ \lambda $- sets in $ ( 0, \infty ) $. There is a topological analogue, with measurability replaced by the Baire property.

ii) The representation theorem: $ f $ is slowly varying if and only if, for $ x $ large enough, $ f $ is of the form

$$ f ( x ) = c ( x ) { \mathop{\rm exp} } \left ( \int\limits _ { a } ^ { x } {\epsilon ( u ) } { { \frac{du }{u} } } \right ) , $$

where $ c ( \cdot ) $, $ \epsilon ( \cdot ) $ are measurable, $ c ( x ) \rightarrow c \in ( 0, \infty ) $, $ \epsilon ( x ) \rightarrow 0 $ as $ x \rightarrow \infty $.

iii) The characterization theorem: for measurable $ f $, $ g ( \lambda ) $ in (a1) must be of the form $ g ( \lambda ) \equiv \lambda ^ \rho $ for some $ \rho \in \mathbf R $, called the index of regular variation: $ f \in R _ \rho $. Then $ f ( x ) = x ^ \rho {\mathcal l} ( x ) $ with $ {\mathcal l} $ slowly varying ( $ {\mathcal l} \in R _ {0} $).

iv) Karamata's theorem: if $ f \in R _ \rho $ and $ \sigma > - ( \rho + 1 ) $, then

$$ \tag{a2 } { \frac{x ^ {\rho + 1 } f ( x ) }{\int\limits _ { a } ^ { x } {t ^ \sigma f ( t ) } {dt } } } \rightarrow \sigma + \rho + 1 ( x \rightarrow \infty ) . $$

(That is, the $ {\mathcal l} $ in $ f ( x ) = x ^ \rho {\mathcal l} ( x ) $" behaves asymptotically like a constant" under integration.) Conversely, (a2) implies $ f \in R _ \rho $.

Perhaps the most important application of Karamata theory to analysis is Karamata's Tauberian theorem (or the Hardy–Littlewood–Karamata theorem): if $ f \in R _ \rho $( $ \rho \geq 0 $) is increasing, with Laplace–Stieltjes transform $ {\widehat{f} } ( s ) = \int _ {0} ^ \infty {e ^ {- sx } } {df ( x ) } $, then $ f ( x ) \sim c { {x ^ \rho {\mathcal l} ( x ) } / {\Gamma ( 1 + \rho ) } } $( $ x \rightarrow \infty $) with $ c \geq 0 $, $ {\mathcal l} \in R _ {0} $ if and only if $ {\widehat{f} } ( s ) \sim c s ^ {- \rho } {\mathcal l} ( {1 / s } ) $ $ ( s \downarrow 0 ) $.

For details, background and references on these and other results, see e.g. [a1], Chap. 1.

The union over all $ \rho \in \mathbf R $ of the classes $ R _ \rho $ gives the class $ R $ of regularly varying functions. This is contained in the larger class $ ER $ of extended regularly varying functions, itself included in the class $ OR $ of $ O $- regularly varying functions: $ R \subset ER \subset OR $. Just as a function $ f \in R $ has an index $ \rho $ of regular variation, and then $ f \in R _ \rho $, so a function $ f \in ER $ has a pair $ c ( f ) , d ( f ) $ of upper and lower Karamata indices (and these are equal, to $ \rho $ say, if and only if $ f \in R _ \rho $), and a function $ f \in OR $ has a pair $ \alpha ( f ) , \beta ( f ) $ of upper and lower Matuszewska indices. These larger classes $ ER $, $ OR $ have analogues of the results above; for instance, uniform convergence and representation theorems. For details, see e.g. [a1], Chap. 2.

Karamata theory may be regarded as the "first-order" theory of regular variation. There is a corresponding "second-order" theory: de Haan theory [a1], Chap. 3.

Karamata theory has found extensive use in several areas of analysis, such as Abelian, Tauberian and Mercerian theorems ([a1], Chap. 4, 5; cf. also Tauberian theorems; Mercer theorem; Abel theorem) and the Levin–Pfluger theory of completely regular growth of entire functions ([a1], Chap. 6; cf. also Entire function), and is also useful in asymptotic questions in analytic number theory [a1], Chap. 7. It has been widely used also in probability theory, following the work of W. Feller [a2]; [a1], Chap. 8.

References

[a1] N.H. Bingham, C.M. Goldie, J.L. Teugels, "Regular variation", Encycl. Math. Appl., 27, Cambridge Univ. Press (1989) (Edition: Second)
[a2] W. Feller, "An introduction to probability theory and its applications", 2, Springer (1976) (Edition: Second)
How to Cite This Entry:
Karamata theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Karamata_theory&oldid=47478
This article was adapted from an original article by N.H. Bingham (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article