Namespaces
Variants
Actions

K-convergence

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

P. Antosik and J. Mikusinski have introduced a stronger form of sequential convergence (cf. also Sequential space), called $\mathcal K$-convergence, which has found applications in a number of areas of analysis. If $\{x_k\}$ is a sequence in a Hausdorff Abelian topological group $(G,\tau)$, then $\{x_k\}$ is $\tau$-$\mathcal K$-convergent if every subsequence of $\{x_k\}$ has a further subsequence $\{x_{n_k}\}$ such that the subseries $\sum_{k=1}^\infty x_{n_k}$ is $\tau$-convergent in $G$. Any $\tau$-$\mathcal K$-convergent sequence is obviously $\tau$-null ($\tau$ convergent to $0$), but the converse does not hold in general although it does hold in a complete metric linear space. A space in which null sequences are $\mathcal K$-convergent is called a $\mathcal K$-space; a complete metric linear space is a $\mathcal K$-space, but there are examples of normal $\mathcal K$-spaces that are not complete [a2].

One of the principal uses of the notion of $\mathcal K$-convergence is in formulating versions of some of the classical results of functional analysis without imposing completeness or barrelledness assumptions. A subset $B$ of a topological vector space $E$ is bounded if for every sequence $\{x_k\}\subset B$ and every null scalar sequence $\{t_k\}$, the sequence $\{t_kx_k\}$ is a null sequence in $E$. A stronger form of boundedness is obtained by replacing the condition that $\{t_kx_k\}$ be a null sequence by the stronger requirement that $\{t_kx_k\}$ is $\mathcal K$-convergent; sets satisfying this stronger condition are called $\mathcal K$-bounded. In general, bounded sets are not $\mathcal K$-bounded; spaces for which the bounded sets are $\mathcal K$-bounded are called $\mathcal A$-spaces. Thus, $\mathcal K$-spaces are $\mathcal A$-spaces but there are examples of $\mathcal A$-spaces that are not $\mathcal K$-spaces. Using the notion of $\mathcal K$-boundedness, a version of the uniform boundedness principle (cf. Uniform boundedness) can be formulated which requires no completeness or barrelledness assumptions on the domain space of the operators. If $E$ and $F$ are topological vector spaces and $\Gamma$ is a family of continuous linear operators from $E$ into $F$ which is pointwise bounded on $E$, then $\Gamma$ is uniformly bounded on $\mathcal K$-bounded subsets of $E$. If $E$ is a complete metric linear space, this statement generalizes the classical uniform boundedness principle for $F$-spaces since in this case $\Gamma$ is equicontinuous (cf. also Equicontinuity). Similar versions of the Banach–Steinhaus theorem and the Mazur–Orlicz theorem on the joint continuity of separately continuous bilinear operators are possible. See [a1] or [a3] for these and further results.

References

[a1] P. Antosik, C. Swartz, "Matrix methods in analysis" , Lecture Notes Math. , 1113 , Springer (1985)
[a2] C. Klis, "An example of a non-complete (K) space" Bull. Acad. Polon. Sci. , 26 (1978) pp. 415–420
[a3] C. Swartz, "Infinite matrices and the gliding hump" , World Sci. (1996)
How to Cite This Entry:
K-convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K-convergence&oldid=32695
This article was adapted from an original article by Charles W. Swartz (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article