Namespaces
Variants
Actions

Iwasawa decomposition

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The unique representation of an arbitrary element $ g $ of a non-compact connected semi-simple real Lie group $ G $ as a product $ g = k an $ of elements $ k,\ a,\ n $ of analytic subgroups $ K,\ A,\ N $ , respectively, where $ K $ , $ A $ and $ N $ are defined as follows. Let $ \mathfrak g = \mathfrak k + \mathfrak P $ be a Cartan decomposition of the Lie algebra $ \mathfrak g $ of $ G $ ; let $ \mathfrak a $ be the maximal commutative subspace of the space $ \mathfrak P $ , and let $ \mathfrak N $ be a nilpotent Lie subalgebra of $ \mathfrak g $ such that $ \mathfrak N $ is the linear hull of the root vectors in some system of positive roots with respect to $ \mathfrak a $ . The decomposition of the Lie algebra as the direct sum of the subalgebras $ \mathfrak k $ , $ \mathfrak a $ and $ \mathfrak N $ is called the Iwasawa decomposition [1] of the semi-simple real Lie algebra $ \mathfrak g $ . The groups $ K $ , $ A $ and $ N $ are defined to be the analytic subgroups of $ G $ corresponding to the subalgebras $ \mathfrak k $ , $ \mathfrak a $ and $ \mathfrak N $ , respectively. The groups $ K $ , $ A $ and $ N $ are closed; $ A $ and $ N $ are simply-connected; $ K $ contains the centre of $ G $ , and the image of $ K $ under the adjoint representation of $ G $ is a maximal compact subgroup of the adjoint group of $ G $ . The mapping $ (k,\ a,\ n) \rightarrow kan $ is an analytic diffeomorphism of the manifold $ K \times A \times N $ onto the Lie group $ G $ . The Iwasawa decomposition plays a fundamental part in the representation theory of semi-simple Lie groups. The Iwasawa decomposition can be defined also for connected semi-simple algebraic groups over a $ p $ - adic field (or, more generally, for groups of $ p $ - adic type) (see [4], [5]).


Comments

An example of an Iwasawa decomposition is $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) = K A N $ with $ K = \mathop{\rm SO}\nolimits _{n} ( \mathbf R ) $ , $ A $ the subgroup of diagonal matrices of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $ and $ N $ a lower triangular matrix with $ 1 $ ' s on the diagonal. So, in particular, every element of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $ gets written as a product of a special orthogonal matrix and a lower triangular matrix.

References

[1] K. Iwasawa, "On some types of topological groups" Ann. of Math. , 50 (1949) pp. 507–558 MR0029911 Zbl 0034.01803
[2] M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018
[3] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) MR0514561 Zbl 0451.53038
[4] F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps $\mathfrak{p}$-adique" Publ. Math. IHES , 23 (1964) pp. 45–74 MR179298
[5] N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of $\mathfrak{p}$-adic Chevalley groups" Publ. Math. IHES , 25 (1965) pp. 5–48 MR185016
[a1] S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 MR0754767 Zbl 0543.58001
How to Cite This Entry:
Iwasawa decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Iwasawa_decomposition&oldid=53634
This article was adapted from an original article by A.S. FedenkoA.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article