Namespaces
Variants
Actions

Difference between revisions of "Implicit function (in algebraic geometry)"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
A function given by an algebraic equation. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503201.png" /> be a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503202.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503203.png" /> (with complex coefficients, say). Then the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503204.png" /> of zeros of this polynomial can be regarded as the graph of a correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503205.png" />. This correspondence, allowing for a certain impreciseness, is also called the function given implicitly by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503206.png" />. Generally speaking, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503207.png" /> is many-valued and not defined everywhere and so is not a function in the usual sense. There are two ways of turning this correspondence into a function. The first, which goes back to B. Riemann, consists in assuming that the domain of definition of the implicit function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503208.png" /> is not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i0503209.png" /> but the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032010.png" />, which is a finite-sheeted covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032011.png" />. This device leads to the highly important concept of a [[Riemann surface|Riemann surface]]. In this approach the notion of an implicit function interlinks with that of an [[Algebraic function|algebraic function]].
+
<!--
 +
i0503201.png
 +
$#A+1 = 60 n = 0
 +
$#C+1 = 60 : ~/encyclopedia/old_files/data/I050/I.0500320 Implicit function (in algebraic geometry)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The other approach consists in representing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032012.png" /> locally as the graph of a single-valued function. Various implicit-function theorems assert that there are open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032014.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032015.png" /> is the graph of a smooth function (in one sense or another) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032016.png" /> (see [[Implicit function|Implicit function]]). However, the open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032018.png" /> are, as a rule, not open in the [[Zariski topology|Zariski topology]] and have no meaning in algebraic geometry. Therefore, one modifies this method in the following manner. A formal germ (or branch) at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032019.png" /> of the implicit function given by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032020.png" /> is defined as a [[Formal power series|formal power series]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032021.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032022.png" />. Quite generally, a power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032023.png" /> satisfying a polynomial equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032024.png" /> is said to be algebraic. An algebraic power series converges in a certain neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032025.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032026.png" /> be a local [[Noetherian ring|Noetherian ring]] with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032027.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032028.png" /> of the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032029.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032030.png" /> is said to be algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032031.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032032.png" /> for some polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032033.png" />. The set of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032034.png" /> that are algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032035.png" /> forms a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032036.png" />. The following version of the implicit-function theorem shows that there are sufficiently many algebraic functions. Let
+
A function given by an algebraic equation. Let $  F ( X _ {1} \dots X _ {n} , Y ) $
 +
be a polynomial in  $  X _ {1} \dots X _ {n} $
 +
and  $  Y $(
 +
with complex coefficients, say). Then the variety  $  V ( F  ) \subset  \mathbf C  ^ {n+} 1 $
 +
of zeros of this polynomial can be regarded as the graph of a correspondence  $  y : \mathbf C  ^ {n} \rightarrow \mathbf C $.  
 +
This correspondence, allowing for a certain impreciseness, is also called the function given implicitly by the equation  $  F ( x , y ) = 0 $.  
 +
Generally speaking,  $  y $
 +
is many-valued and not defined everywhere and so is not a function in the usual sense. There are two ways of turning this correspondence into a function. The first, which goes back to B. Riemann, consists in assuming that the domain of definition of the implicit function  $  y $
 +
is not  $  \mathbf C  ^ {n} $
 +
but the variety  $  V ( F  ) $,
 +
which is a finite-sheeted covering of  $  \mathbf C  ^ {n} $.  
 +
This device leads to the highly important concept of a [[Riemann surface|Riemann surface]]. In this approach the notion of an implicit function interlinks with that of an [[Algebraic function|algebraic function]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032037.png" /></td> </tr></table>
+
The other approach consists in representing  $  V ( F  ) $
 +
locally as the graph of a single-valued function. Various implicit-function theorems assert that there are open sets  $  U \subset  \mathbf C  ^ {n} $
 +
and  $  W \subset  \mathbf C $
 +
for which  $  ( U \times W ) \cap V ( F  ) $
 +
is the graph of a smooth function (in one sense or another)  $  y : U \rightarrow W $(
 +
see [[Implicit function|Implicit function]]). However, the open sets  $  U $
 +
and  $  W $
 +
are, as a rule, not open in the [[Zariski topology|Zariski topology]] and have no meaning in algebraic geometry. Therefore, one modifies this method in the following manner. A formal germ (or branch) at a point  $  a \in \mathbf C  ^ {n} $
 +
of the implicit function given by the equation  $  F ( X , Y ) = 0 $
 +
is defined as a [[Formal power series|formal power series]]  $  y \in \mathbf C [ [ X _ {1} - a _ {1} \dots X _ {n} - a _ {n} ] ] $
 +
such that  $  F ( X , y ) = 0 $.
 +
Quite generally, a power series  $  y $
 +
satisfying a polynomial equation  $  F ( X , Y ) = 0 $
 +
is said to be algebraic. An algebraic power series converges in a certain neighbourhood of  $  a $.
  
be a collection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032038.png" /> polynomials from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032039.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032040.png" /> be elements of the residue class field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032041.png" /> (the bar above a letter means reduction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032042.png" />) such that:
+
Let  $  A $
 +
be a local [[Noetherian ring|Noetherian ring]] with maximal ideal  $  \mathfrak m $.
 +
An element  $  y $
 +
of the completion  $  \widehat{A}  $
 +
of $  A $
 +
is said to be algebraic over  $  A $
 +
if  $  F ( y) = 0 $
 +
for some polynomial  $  F ( Y) \in A [ Y ] $.  
 +
The set of elements of $  \widehat{A}  $
 +
that are algebraic over  $  A $
 +
forms a ring  $  \widetilde{A}  $.  
 +
The following version of the implicit-function theorem shows that there are sufficiently many algebraic functions. Let
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032043.png" />;
+
$$
 +
f ( Y)  =  ( f _ {1} ( Y _ {1} \dots Y _ {m} ) \dots f _ {m} ( Y _ {1} \dots Y _ {m} ) )
 +
$$
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032044.png" />.
+
be a collection of  $  m $
 +
polynomials from  $  A [ Y _ {1} \dots Y _ {m} ] $
 +
and let  $  \overline{y}\; {}  ^ {0} = ( \overline{y}\; _ {0} \dots \overline{y}\; _ {m} ) $
 +
be elements of the residue class field  $  A / \mathfrak m $(
 +
the bar above a letter means reduction  $  \mathop{\rm mod}  \mathfrak m $)
 +
such that:
  
Then there exist elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032045.png" /> algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032046.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032048.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032049.png" /> is a [[Hensel ring|Hensel ring]].
+
1)  $  \overline{f}\; ( \overline{y}\; {}  ^ {0} ) = 0 $;
  
Another result of this type is Artin's approximation theorem (see [[#References|[2]]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032050.png" /> be a local ring that is the localization of an algebra of finite type over a field. Next, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032051.png" /> be a system of polynomial equations with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032052.png" /> (or in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032053.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032054.png" /> be a vector with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032056.png" />. Then there is a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032057.png" /> with components in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032058.png" />, arbitrarily close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032059.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050320/i05032060.png" />. There is also a version [[#References|[3]]] of this theorem for systems of analytic equations.
+
2)  $  { \mathop{\rm det} ( {\partial  f _ {i} } / {\partial  Y _ {i} } ) } bar ( \overline{y}\; {}  ^ {0} ) \neq 0 $.
 +
 
 +
Then there exist elements  $  y = ( y _ {1} \dots y _ {m} ) $
 +
algebraic over  $  A $
 +
such that  $  f ( y) = 0 $
 +
and  $  \overline{y}\; = \overline{y}\; {}  ^ {0} $.
 +
In other words,  $  \widetilde{A}  $
 +
is a [[Hensel ring|Hensel ring]].
 +
 
 +
Another result of this type is Artin's approximation theorem (see [[#References|[2]]]). Let $  A $
 +
be a local ring that is the localization of an algebra of finite type over a field. Next, let $  f ( Y) = 0 $
 +
be a system of polynomial equations with coefficients in $  A $(
 +
or in $  \widetilde{A}  $)  
 +
and let $  \widehat{y}  $
 +
be a vector with coefficients in $  \widehat{A}  $
 +
such that $  f ( \widehat{y}  ) = 0 $.  
 +
Then there is a vector $  \widetilde{y}  $
 +
with components in $  \widetilde{A}  $,  
 +
arbitrarily close to $  \widehat{y}  $
 +
and such that $  f ( \widetilde{y}  ) = 0 $.  
 +
There is also a version [[#References|[3]]] of this theorem for systems of analytic equations.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Artin, "Algebraic spaces" , Yale Univ. Press (1971) {{MR|0427316}} {{MR|0407012}} {{ZBL|0232.14003}} {{ZBL|0226.14001}} {{ZBL|0216.05501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Artin, "Algebraic approximation of structures over complete local rings" ''Publ. Math. IHES'' , '''36''' (1969) pp. 23–58 {{MR|0268188}} {{ZBL|0181.48802}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Artin, "On the solution of algebraic equations" ''Invent. Math.'' , '''5''' (1968) pp. 277–291</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Artin, "Algebraic spaces" , Yale Univ. Press (1971) {{MR|0427316}} {{MR|0407012}} {{ZBL|0232.14003}} {{ZBL|0226.14001}} {{ZBL|0216.05501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Artin, "Algebraic approximation of structures over complete local rings" ''Publ. Math. IHES'' , '''36''' (1969) pp. 23–58 {{MR|0268188}} {{ZBL|0181.48802}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Artin, "On the solution of algebraic equations" ''Invent. Math.'' , '''5''' (1968) pp. 277–291</TD></TR></table>

Latest revision as of 22:11, 5 June 2020


A function given by an algebraic equation. Let $ F ( X _ {1} \dots X _ {n} , Y ) $ be a polynomial in $ X _ {1} \dots X _ {n} $ and $ Y $( with complex coefficients, say). Then the variety $ V ( F ) \subset \mathbf C ^ {n+} 1 $ of zeros of this polynomial can be regarded as the graph of a correspondence $ y : \mathbf C ^ {n} \rightarrow \mathbf C $. This correspondence, allowing for a certain impreciseness, is also called the function given implicitly by the equation $ F ( x , y ) = 0 $. Generally speaking, $ y $ is many-valued and not defined everywhere and so is not a function in the usual sense. There are two ways of turning this correspondence into a function. The first, which goes back to B. Riemann, consists in assuming that the domain of definition of the implicit function $ y $ is not $ \mathbf C ^ {n} $ but the variety $ V ( F ) $, which is a finite-sheeted covering of $ \mathbf C ^ {n} $. This device leads to the highly important concept of a Riemann surface. In this approach the notion of an implicit function interlinks with that of an algebraic function.

The other approach consists in representing $ V ( F ) $ locally as the graph of a single-valued function. Various implicit-function theorems assert that there are open sets $ U \subset \mathbf C ^ {n} $ and $ W \subset \mathbf C $ for which $ ( U \times W ) \cap V ( F ) $ is the graph of a smooth function (in one sense or another) $ y : U \rightarrow W $( see Implicit function). However, the open sets $ U $ and $ W $ are, as a rule, not open in the Zariski topology and have no meaning in algebraic geometry. Therefore, one modifies this method in the following manner. A formal germ (or branch) at a point $ a \in \mathbf C ^ {n} $ of the implicit function given by the equation $ F ( X , Y ) = 0 $ is defined as a formal power series $ y \in \mathbf C [ [ X _ {1} - a _ {1} \dots X _ {n} - a _ {n} ] ] $ such that $ F ( X , y ) = 0 $. Quite generally, a power series $ y $ satisfying a polynomial equation $ F ( X , Y ) = 0 $ is said to be algebraic. An algebraic power series converges in a certain neighbourhood of $ a $.

Let $ A $ be a local Noetherian ring with maximal ideal $ \mathfrak m $. An element $ y $ of the completion $ \widehat{A} $ of $ A $ is said to be algebraic over $ A $ if $ F ( y) = 0 $ for some polynomial $ F ( Y) \in A [ Y ] $. The set of elements of $ \widehat{A} $ that are algebraic over $ A $ forms a ring $ \widetilde{A} $. The following version of the implicit-function theorem shows that there are sufficiently many algebraic functions. Let

$$ f ( Y) = ( f _ {1} ( Y _ {1} \dots Y _ {m} ) \dots f _ {m} ( Y _ {1} \dots Y _ {m} ) ) $$

be a collection of $ m $ polynomials from $ A [ Y _ {1} \dots Y _ {m} ] $ and let $ \overline{y}\; {} ^ {0} = ( \overline{y}\; _ {0} \dots \overline{y}\; _ {m} ) $ be elements of the residue class field $ A / \mathfrak m $( the bar above a letter means reduction $ \mathop{\rm mod} \mathfrak m $) such that:

1) $ \overline{f}\; ( \overline{y}\; {} ^ {0} ) = 0 $;

2) $ { \mathop{\rm det} ( {\partial f _ {i} } / {\partial Y _ {i} } ) } bar ( \overline{y}\; {} ^ {0} ) \neq 0 $.

Then there exist elements $ y = ( y _ {1} \dots y _ {m} ) $ algebraic over $ A $ such that $ f ( y) = 0 $ and $ \overline{y}\; = \overline{y}\; {} ^ {0} $. In other words, $ \widetilde{A} $ is a Hensel ring.

Another result of this type is Artin's approximation theorem (see [2]). Let $ A $ be a local ring that is the localization of an algebra of finite type over a field. Next, let $ f ( Y) = 0 $ be a system of polynomial equations with coefficients in $ A $( or in $ \widetilde{A} $) and let $ \widehat{y} $ be a vector with coefficients in $ \widehat{A} $ such that $ f ( \widehat{y} ) = 0 $. Then there is a vector $ \widetilde{y} $ with components in $ \widetilde{A} $, arbitrarily close to $ \widehat{y} $ and such that $ f ( \widetilde{y} ) = 0 $. There is also a version [3] of this theorem for systems of analytic equations.

References

[1] M. Artin, "Algebraic spaces" , Yale Univ. Press (1971) MR0427316 MR0407012 Zbl 0232.14003 Zbl 0226.14001 Zbl 0216.05501
[2] M. Artin, "Algebraic approximation of structures over complete local rings" Publ. Math. IHES , 36 (1969) pp. 23–58 MR0268188 Zbl 0181.48802
[3] M. Artin, "On the solution of algebraic equations" Invent. Math. , 5 (1968) pp. 277–291
How to Cite This Entry:
Implicit function (in algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Implicit_function_(in_algebraic_geometry)&oldid=23863
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article