Namespaces
Variants
Actions

Difference between revisions of "Hedetniemi conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
For two graphs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101101.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101102.png" /> (cf. [[Graph|Graph]]), their categorial product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101103.png" /> is the graph with vertex set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101104.png" /> while an edge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101105.png" /> is adjacent to an edge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101106.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101107.png" /> is adjacent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h1101109.png" /> is adjacent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011010.png" />. If the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011011.png" /> has a good <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011012.png" />-colouring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011013.png" /> (cf. [[Graph colouring|Graph colouring]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011014.png" /> has a good <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011015.png" />-colouring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011016.png" />, given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011017.png" />. As this statement also holds for good <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011018.png" />-colourings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011019.png" />, it follows that the chromatic number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011020.png" />. Hedetniemi's conjecture, [[#References|[a1]]], is that for all finite graphs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011022.png" />:
+
{{TEX|done}}
 +
For two graphs $A$ and $B$ (cf. [[Graph|Graph]]), their categorial product $A\times B$ is the graph with vertex set $V(A\times B)=V(A)\times V(B)$ while an edge $(a_0,b_0)$ is adjacent to an edge $(a_1,b_1)$ if and only if $a_0$ is adjacent to $a_1$ and $b_0$ is adjacent to $b_1$. If the graph $A$ has a good $n$-colouring $\gamma$ (cf. [[Graph colouring|Graph colouring]]), then $A\times B$ has a good $n$-colouring $\gamma^*$, given by $\gamma^*(a,b)=\gamma(a)$. As this statement also holds for good $n$-colourings of $B$, it follows that the chromatic number $\chi(A\times B)\leq\min\{\chi(A),\chi(B)\}$. Hedetniemi's conjecture, [[#References|[a1]]], is that for all finite graphs $A$ and $B$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011023.png" /></td> </tr></table>
+
$$\chi(A\times B)=\min\{\chi(A),\chi(B)\}.$$
  
The corresponding statement for infinite graphs is not true [[#References|[a2]]], but little is known about the relationship between the cardinalities of the chromatic numbers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011025.png" /> and the chromatic number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011026.png" />.
+
The corresponding statement for infinite graphs is not true [[#References|[a2]]], but little is known about the relationship between the cardinalities of the chromatic numbers of $A$ and $B$ and the chromatic number of $A\times B$.
  
It is obvious that the chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011027.png" />-chromatic graphs is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011028.png" />. L. Lovász [[#References|[a3]]] showed that the chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011029.png" />-chromatic graphs is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011030.png" /> and in [[#References|[a4]]] it is proven that the chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011031.png" />-chromatic graphs is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011032.png" />. It is not known whether the chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011033.png" />-chromatic graphs is always <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011034.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011035.png" />. The lack of understanding of this problem is even more embarrassing than that.
+
It is obvious that the chromatic number of the product of two $2$-chromatic graphs is $2$. L. Lovász [[#References|[a3]]] showed that the chromatic number of the product of two $3$-chromatic graphs is $3$ and in [[#References|[a4]]] it is proven that the chromatic number of the product of two $4$-chromatic graphs is $4$. It is not known whether the chromatic number of the product of two $n$-chromatic graphs is always $n$ for any $n\geq5$. The lack of understanding of this problem is even more embarrassing than that.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011036.png" /> be the largest number such that whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011038.png" /> are two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011039.png" />-chromatic graphs, then the chromatic number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011040.png" /> is larger than or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011041.png" />. Clearly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011043.png" /> and Hedetniemi's conjecture says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011044.png" />. About <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011045.png" /> it is only known that either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011046.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011047.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011048.png" /> is unbounded, [[#References|[a5]]] and [[#References|[a6]]].
+
Let $f(n)$ be the largest number such that whenever $A$ and $B$ are two $n$-chromatic graphs, then the chromatic number of $A\times B$ is larger than or equal to $f(n)$. Clearly, if $n\geq4$, then $4\leq f(n)\leq n$ and Hedetniemi's conjecture says that $f(n)=n$. About $f(n)$ it is only known that either $f(n)\leq9$ for all $n$ or $f(n)$ is unbounded, [[#References|[a5]]] and [[#References|[a6]]].
  
Write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011049.png" /> if there is a homomorphism from the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011050.png" /> to the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011051.png" /> (a function from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011052.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011053.png" /> which preserves the edges). Write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011054.png" /> if there is no homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011055.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011056.png" />. A graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011057.png" /> is called multiplicative, [[#References|[a7]]], [[#References|[a8]]], if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011059.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011060.png" />. Note that a graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011061.png" /> has a good <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011062.png" />-colouring if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011063.png" />. Hence Hedetniemi's conjecture is equivalent to asking whether the complete graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011064.png" /> (cf. also [[Graph|Graph]]) is multiplicative.
+
Write $A\mapsto B$ if there is a homomorphism from the graph $A$ to the graph $B$ (a function from $A$ to $B$ which preserves the edges). Write $A\not\mapsto B$ if there is no homomorphism from $A$ to $B$. A graph $M$ is called multiplicative, [[#References|[a7]]], [[#References|[a8]]], if $A\not\mapsto M$ and $B\not\mapsto M$ imply $A\times B\not\mapsto M$. Note that a graph $A$ has a good $n$-colouring if and only if $A\mapsto K_n$. Hence Hedetniemi's conjecture is equivalent to asking whether the complete graph $K_n$ (cf. also [[Graph|Graph]]) is multiplicative.
  
Two graphs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011066.png" /> are equivalent, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011067.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011069.png" />. It is not difficult to check that the equivalence classes of finite graphs form a [[Distributive lattice|distributive lattice]] under the order relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011070.png" /> and that a graph is multiplicative if and only if it is meet-irreducible in this lattice. Once this general setting of the problem has been realized, it is not difficult to see that Hedetniemi's conjecture has a natural generalization, [[#References|[a8]]], to the problem of finding the meet-irreducible elements in the distributive lattices of various types of relational structures. This line of investigation leads to a setting in [[Topos|topos]] theory and, to a certain extent, in logic, [[#References|[a9]]].
+
Two graphs $A$ and $B$ are equivalent, $A\sim B$, if $A\mapsto B$ and $B\mapsto A$. It is not difficult to check that the equivalence classes of finite graphs form a [[Distributive lattice|distributive lattice]] under the order relation $\mapsto$ and that a graph is multiplicative if and only if it is meet-irreducible in this lattice. Once this general setting of the problem has been realized, it is not difficult to see that Hedetniemi's conjecture has a natural generalization, [[#References|[a8]]], to the problem of finding the meet-irreducible elements in the distributive lattices of various types of relational structures. This line of investigation leads to a setting in [[Topos|topos]] theory and, to a certain extent, in logic, [[#References|[a9]]].
  
 
Of course this introduces the even more general task of trying to understand the distributive lattice of, say, all finite relational structures of a given type and, in connection with this, the problem of deciding whether there is a homomorphism from a given relational structure to another one of the same type. In this context one of the more interesting types of relational structures are finite directed graphs, [[#References|[a10]]]. Multiplicative partially ordered sets have been investigated in [[#References|[a11]]].
 
Of course this introduces the even more general task of trying to understand the distributive lattice of, say, all finite relational structures of a given type and, in connection with this, the problem of deciding whether there is a homomorphism from a given relational structure to another one of the same type. In this context one of the more interesting types of relational structures are finite directed graphs, [[#References|[a10]]]. Multiplicative partially ordered sets have been investigated in [[#References|[a11]]].
Line 18: Line 19:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Hedetniemi,  "Homomorphisms of graphs and automata"  ''Univ. Michigan Technical Report'' , '''03105–44–T'''  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Hajnal,  "The chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011071.png" />-chromatic graphs can be countable"  ''Combinatorica'' , '''5'''  (1985)  pp. 137–140</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L. Lovász,  "Operations with structures"  ''Acta Math. Acad. Sci. Hung.''  (1967)  pp. 321–328</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.H. El-Zahar,  N.W. Sauer,  "The chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011072.png" />-chromatic graphs is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011073.png" />"  ''Combinatorica'' , '''5''' :  2  (1985)  pp. 121–126</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S. Poljak,  "Coloring digraphs by iterated antichains"  ''Comment. Math. Univ. Carolin.'' , '''32''' :  2  (1991)  pp. 209–212</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Poljak,  V. Rödl,  "On the arc-chromatic number of a digraph"  ''JCT B'' , '''31'''  (1981)  pp. 190–198</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D.J. Miller,  "The categorical product of graphs"  ''Canad. J. Math.'' , '''20'''  (1968)  pp. 1511–1521</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  R. Haggkvist,  P. Hell,  D.J. Miller,  V.N. Lara,  "On multiplicative graphs and the product conjecture"  ''Combinatorica'' , '''8''' :  1  (1988)  pp. 63–74</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  D. Duffus,  N.W. Sauer,  "Lattices arising in categorial investigations of Hedetniemi's conjecture"  ''Discrete Math.'' , '''153'''  (1996)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  P. Hell,  H. Zhou,  X. Zhu,  "Homomorphisms to oriented cycles"  ''Combinatorica''  (??)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  N.W. Sauer,  X. Zhu,  "Multiplicative posets"  ''Order'' , '''8'''  (1992)  pp. 349–358</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  D. Duffus,  B. Sands,  R. Woodrow,  "On the chromatic number of the product of graphs"  ''J. Graph Th.'' , '''9'''  (1985)  pp. 487–495</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  N.W. Sauer,  X. Zhu,  "An approach to Hedetniemi's conjecture"  ''J. Graph Th.'' , '''16''' :  5  (1992)  pp. 423–436</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  G. Sabidussi,  "Graph multiplication"  ''Math. Z.'' , '''72'''  (1960)  pp. 446–457</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  R.J. Nowakowski,  D. Rall,  "Associative graph products and their independence, domination and coloring numbers"  ''J. Graph Th.''  (??)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Hedetniemi,  "Homomorphisms of graphs and automata"  ''Univ. Michigan Technical Report'' , '''03105–44–T'''  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Hajnal,  "The chromatic number of the product of two $KAPAJA_1$-chromatic graphs can be countable"  ''Combinatorica'' , '''5'''  (1985)  pp. 137–140</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L. Lovász,  "Operations with structures"  ''Acta Math. Acad. Sci. Hung.''  (1967)  pp. 321–328</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.H. El-Zahar,  N.W. Sauer,  "The chromatic number of the product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011072.png" />-chromatic graphs is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110110/h11011073.png" />"  ''Combinatorica'' , '''5''' :  2  (1985)  pp. 121–126</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S. Poljak,  "Coloring digraphs by iterated antichains"  ''Comment. Math. Univ. Carolin.'' , '''32''' :  2  (1991)  pp. 209–212</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Poljak,  V. Rödl,  "On the arc-chromatic number of a digraph"  ''JCT B'' , '''31'''  (1981)  pp. 190–198</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D.J. Miller,  "The categorical product of graphs"  ''Canad. J. Math.'' , '''20'''  (1968)  pp. 1511–1521</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  R. Haggkvist,  P. Hell,  D.J. Miller,  V.N. Lara,  "On multiplicative graphs and the product conjecture"  ''Combinatorica'' , '''8''' :  1  (1988)  pp. 63–74</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  D. Duffus,  N.W. Sauer,  "Lattices arising in categorial investigations of Hedetniemi's conjecture"  ''Discrete Math.'' , '''153'''  (1996)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  P. Hell,  H. Zhou,  X. Zhu,  "Homomorphisms to oriented cycles"  ''Combinatorica''  (??)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  N.W. Sauer,  X. Zhu,  "Multiplicative posets"  ''Order'' , '''8'''  (1992)  pp. 349–358</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  D. Duffus,  B. Sands,  R. Woodrow,  "On the chromatic number of the product of graphs"  ''J. Graph Th.'' , '''9'''  (1985)  pp. 487–495</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  N.W. Sauer,  X. Zhu,  "An approach to Hedetniemi's conjecture"  ''J. Graph Th.'' , '''16''' :  5  (1992)  pp. 423–436</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  G. Sabidussi,  "Graph multiplication"  ''Math. Z.'' , '''72'''  (1960)  pp. 446–457</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  R.J. Nowakowski,  D. Rall,  "Associative graph products and their independence, domination and coloring numbers"  ''J. Graph Th.''  (??)</TD></TR></table>

Revision as of 15:24, 22 September 2014

For two graphs $A$ and $B$ (cf. Graph), their categorial product $A\times B$ is the graph with vertex set $V(A\times B)=V(A)\times V(B)$ while an edge $(a_0,b_0)$ is adjacent to an edge $(a_1,b_1)$ if and only if $a_0$ is adjacent to $a_1$ and $b_0$ is adjacent to $b_1$. If the graph $A$ has a good $n$-colouring $\gamma$ (cf. Graph colouring), then $A\times B$ has a good $n$-colouring $\gamma^*$, given by $\gamma^*(a,b)=\gamma(a)$. As this statement also holds for good $n$-colourings of $B$, it follows that the chromatic number $\chi(A\times B)\leq\min\{\chi(A),\chi(B)\}$. Hedetniemi's conjecture, [a1], is that for all finite graphs $A$ and $B$:

$$\chi(A\times B)=\min\{\chi(A),\chi(B)\}.$$

The corresponding statement for infinite graphs is not true [a2], but little is known about the relationship between the cardinalities of the chromatic numbers of $A$ and $B$ and the chromatic number of $A\times B$.

It is obvious that the chromatic number of the product of two $2$-chromatic graphs is $2$. L. Lovász [a3] showed that the chromatic number of the product of two $3$-chromatic graphs is $3$ and in [a4] it is proven that the chromatic number of the product of two $4$-chromatic graphs is $4$. It is not known whether the chromatic number of the product of two $n$-chromatic graphs is always $n$ for any $n\geq5$. The lack of understanding of this problem is even more embarrassing than that.

Let $f(n)$ be the largest number such that whenever $A$ and $B$ are two $n$-chromatic graphs, then the chromatic number of $A\times B$ is larger than or equal to $f(n)$. Clearly, if $n\geq4$, then $4\leq f(n)\leq n$ and Hedetniemi's conjecture says that $f(n)=n$. About $f(n)$ it is only known that either $f(n)\leq9$ for all $n$ or $f(n)$ is unbounded, [a5] and [a6].

Write $A\mapsto B$ if there is a homomorphism from the graph $A$ to the graph $B$ (a function from $A$ to $B$ which preserves the edges). Write $A\not\mapsto B$ if there is no homomorphism from $A$ to $B$. A graph $M$ is called multiplicative, [a7], [a8], if $A\not\mapsto M$ and $B\not\mapsto M$ imply $A\times B\not\mapsto M$. Note that a graph $A$ has a good $n$-colouring if and only if $A\mapsto K_n$. Hence Hedetniemi's conjecture is equivalent to asking whether the complete graph $K_n$ (cf. also Graph) is multiplicative.

Two graphs $A$ and $B$ are equivalent, $A\sim B$, if $A\mapsto B$ and $B\mapsto A$. It is not difficult to check that the equivalence classes of finite graphs form a distributive lattice under the order relation $\mapsto$ and that a graph is multiplicative if and only if it is meet-irreducible in this lattice. Once this general setting of the problem has been realized, it is not difficult to see that Hedetniemi's conjecture has a natural generalization, [a8], to the problem of finding the meet-irreducible elements in the distributive lattices of various types of relational structures. This line of investigation leads to a setting in topos theory and, to a certain extent, in logic, [a9].

Of course this introduces the even more general task of trying to understand the distributive lattice of, say, all finite relational structures of a given type and, in connection with this, the problem of deciding whether there is a homomorphism from a given relational structure to another one of the same type. In this context one of the more interesting types of relational structures are finite directed graphs, [a10]. Multiplicative partially ordered sets have been investigated in [a11].

For graphs, Hedetniemi's conjecture has been confirmed for various special cases and several interesting observations have been made. See [a12], [a13], [a14]. For a general discussion of graph products, see [a15].

References

[a1] S. Hedetniemi, "Homomorphisms of graphs and automata" Univ. Michigan Technical Report , 03105–44–T (1966)
[a2] A. Hajnal, "The chromatic number of the product of two $KAPAJA_1$-chromatic graphs can be countable" Combinatorica , 5 (1985) pp. 137–140
[a3] L. Lovász, "Operations with structures" Acta Math. Acad. Sci. Hung. (1967) pp. 321–328
[a4] M.H. El-Zahar, N.W. Sauer, "The chromatic number of the product of two -chromatic graphs is " Combinatorica , 5 : 2 (1985) pp. 121–126
[a5] S. Poljak, "Coloring digraphs by iterated antichains" Comment. Math. Univ. Carolin. , 32 : 2 (1991) pp. 209–212
[a6] S. Poljak, V. Rödl, "On the arc-chromatic number of a digraph" JCT B , 31 (1981) pp. 190–198
[a7] D.J. Miller, "The categorical product of graphs" Canad. J. Math. , 20 (1968) pp. 1511–1521
[a8] R. Haggkvist, P. Hell, D.J. Miller, V.N. Lara, "On multiplicative graphs and the product conjecture" Combinatorica , 8 : 1 (1988) pp. 63–74
[a9] D. Duffus, N.W. Sauer, "Lattices arising in categorial investigations of Hedetniemi's conjecture" Discrete Math. , 153 (1996)
[a10] P. Hell, H. Zhou, X. Zhu, "Homomorphisms to oriented cycles" Combinatorica (??)
[a11] N.W. Sauer, X. Zhu, "Multiplicative posets" Order , 8 (1992) pp. 349–358
[a12] D. Duffus, B. Sands, R. Woodrow, "On the chromatic number of the product of graphs" J. Graph Th. , 9 (1985) pp. 487–495
[a13] N.W. Sauer, X. Zhu, "An approach to Hedetniemi's conjecture" J. Graph Th. , 16 : 5 (1992) pp. 423–436
[a14] G. Sabidussi, "Graph multiplication" Math. Z. , 72 (1960) pp. 446–457
[a15] R.J. Nowakowski, D. Rall, "Associative graph products and their independence, domination and coloring numbers" J. Graph Th. (??)
How to Cite This Entry:
Hedetniemi conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hedetniemi_conjecture&oldid=13925
This article was adapted from an original article by N.W. Sauer (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article