Namespaces
Variants
Actions

Hardy variation

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B30 Secondary: 26A45 [MSN][ZBL]

A generalization to functions of several variables of the Variation of a function of one variable, proposed by Hardy in [Har] (see also [Ha]). However the modern theory of functions of bounded variation uses a different generalization (see Function of bounded variation and Variation of a function). Therefore the Hardy variation is seldomly used nowadays.

Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and a function $f:R\to \mathbb R$. We define \[ \Delta_{h_k} (f, x) := f (x_1, \ldots, x_k+ h_k, \ldots, x_n) - f(x_1, \ldots, x_k, \ldots x_n) \] and, recursively, \[ \Delta_{h_1h_2\ldots h_k} (f, x):= \Delta_{h_k} \left(\Delta_{h_1\ldots h_{k-1}} , x\right)\, . \] Consider next the collection $\Pi_k$ of finite ordered families $\pi_k$ of points $t_k^1 < t_k^2< \ldots < t_k^{N_k+1}\in [a_k, b_k]$. For each such $\pi_k$ we denote by $h^i_k$ the difference $t_k^{i+1}- t_k^i$.

Definition We define $\tilde{H}_n (f)$ as the supremum over $(\pi_1, \ldots, \pi_n)\in \Pi_1\times \ldots \times \Pi_n$ of the sums \[ \sum_{i_1=1}^{N_1} \ldots \sum_{i_n=1}^{N_n} \left|\Delta_{h^{i_1}_1\ldots h^{i_n}_n} \left(f, \left(x^{i_1}_1, \ldots x^{i_n}_n\right)\right)\right|\, \] ($\tilde{H}_n (f)$ is indeed the Vitali variation of $f$). Finally, let $\alpha, \bar{\alpha}$ be pair of ordered subsets which gives a partition of $\{1, \ldots, n\}$. For each such pair and for each \[ (y_1, \ldots, y_s)\in [a_{\alpha_1}, b_{\alpha_1}]\times \ldots \times [a_{\alpha_s}, b_{\alpha_s}] \] we denote by $f^y_\alpha$ the function of $n-s$ variables $z_1, \ldots, z_{n-s}$ given by $f(x_1, \ldots, x_n)$ where $x_{\alpha_i} = y_i$ and $x_{\bar{\alpha}_j}= z_j$. The Hardy variation of $f$ is then given by \[ V_H (f) = \sup_{\alpha}\; \sup_y\; \tilde{H}_{n-s} \left(f^y_\alpha\right)\, . \] If $V_H (f)<\infty$, then one says that the function $f$ has bounded (finite) Hardy variation.

The original definition of Hardy considered the case $n=2$ and the author introduced it to generalize the Jordan criterion on the converge of Fourier series to Fourier double series. In particular in [Har] he proved the following

Theorem Assume a function $f:[0,2\pi]^2\to \mathbb R$ has finite Hardy variation. Then at every point $(x_1, x_2)$ the rectangular partial sums of the Fourier double series of $f$ converges to \[ \frac{1}{4}\left(f(x_1^+, x_2^+) + f (x_1^-, x_2^-) + f(x_1^+, x_2^-)+ f(x_1^-, x_2^+)\right) \] (where \[ f (x_1^+, x_2^+) = \lim_{(y_1, y_2)\to 0, y_1>0, y_2>0} f(x_1+y_1, x_2+y_2) \] and the limits $f (x_1^-, x_2^-)$, $f(x_1^+, x_2^-)$, $f(x_1^-, x_2^+)$ are defined analogously).

In fact, this theorem holds even if we just assume that $f$ has finite Vitali variation, see the references therein.

A function $f$ has finite Hardy variation if and only if it can be written as the difference of two functions $f^+-f^-$ such that $\Delta_{h_1, \ldots, h_n} (f, x)\geq 0$ for any choice of nonnegative increments $h_1, \ldots, h_n$. This statement generalizes, therefore, the Jordan decomposition of a function of bounded variation of one real variable. If a function has bounded Hardy variation, then it also has necessarily bounded Arzelà variation.

References

[Har] G.H. Hardy, "On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters" Quarterly J. Math. , 37 (1905) pp. 53–79. JFM Zbl 36.0501.02
[Ha] H. Hahn, "Theorie der reellen Funktionen" , 1 , Springer (1921). JFM Zbl 48.0261.09
How to Cite This Entry:
Hardy variation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy_variation&oldid=29153
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article