Namespaces
Variants
Actions

Difference between revisions of "Genetic algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439701.png" /> be a non-associative, commutative algebra of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439702.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439703.png" />.
+
<!--
 +
g0439701.png
 +
$#A+1 = 110 n = 0
 +
$#C+1 = 110 : ~/encyclopedia/old_files/data/G043/G.0403970 Genetic algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439704.png" /> be an algebraic extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439705.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439706.png" /> be the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439707.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439708.png" /> (cf. also [[Extension of a field|Extension of a field]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g0439709.png" /> admit a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397011.png" />, with multiplication constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397012.png" />, defined by
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397013.png" /></td> </tr></table>
+
Let  $  A $
 +
be a non-associative, commutative algebra of dimension  $  n + 1 $
 +
over a field  $  K $.
 +
 
 +
Let the field  $  L $
 +
be an algebraic extension of  $  K $,
 +
and let  $  A _ {L} $
 +
be the extension of  $  A $
 +
over  $  L $(
 +
cf. also [[Extension of a field|Extension of a field]]). Let  $  A _ {L} $
 +
admit a basis  $  \{ c _ {0} , c _ {1} \dots c _ {n} \} $,
 +
$  c _ {0} \in A $,
 +
with [[structure constant]]s  $  \lambda _ {ijk} $,
 +
defined by
 +
 
 +
$$
 +
c _ {i} c _ {j}  = \
 +
\sum _ {k = 0 } ^ { n }  \lambda _ {ijk} c _ {k} ,\ \
 +
i, j = 0 \dots n,
 +
$$
  
 
which have the following properties:
 
which have the following properties:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397014.png" />,
+
$  \lambda _ {000} = 1 $,
 +
 
 +
$  \lambda _ {0jk} = 0 $
 +
for  $  k < j $,
 +
$  j = 1 \dots n $;
 +
$  k = 0 \dots n $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397015.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397017.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397018.png" />,
+
$  \lambda _ {ijk} = 0 $
 +
for $  k \leq  \max \{ i, j \} $,
 +
$  i, j = 1 \dots n $;  
 +
$  k = 0 \dots n $.
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397019.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397021.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397022.png" />.
+
Then  $  A $
 +
is called a genetic algebra and  $  \{ c _ {0} \dots c _ {n} \} $
 +
is called a canonical basis of  $  A $.  
 +
The multiplication constants  $  \lambda _ {0ii} $,
 +
$  i = 0 \dots n $,  
 +
are invariants of a genetic algebra; they are called the ''train roots'' of  $  A $.
  
Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397023.png" /> is called a genetic algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397024.png" /> is called a canonical basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397025.png" />. The multiplication constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397027.png" />, are invariants of a genetic algebra; they are called the train roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397028.png" />.
+
An algebra  $  A $
 +
is called a [[baric algebra]] if there exists a non-trivial algebra homomorphism  $  \omega : A \rightarrow K $;
 +
$  \omega $
 +
is called a weight homomorphism or simply a weight. Every genetic algebra  $  A $
 +
is baric with  $  \omega : A \rightarrow K $
 +
defined by  $  \omega ( c _ {0} ) = 1 $,  
 +
$  \omega ( c _ {i} ) = 0 $,
 +
$  i = 1 \dots n $;  
 +
and  $  \mathop{\rm ker}  \omega $
 +
is an  $  n $-
 +
dimensional ideal of $  A $.
  
An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397029.png" /> is called baric if there exists a non-trivial algebra homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397030.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397031.png" /> is called a weight homomorphism or simply a weight. Every genetic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397032.png" /> is baric with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397033.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397036.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397037.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397038.png" />-dimensional ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397039.png" />.
+
Let  $  T ( A) $
 +
be the transformation algebra of the algebra $  A $,
 +
i.e. the algebra generated by the (say) left transformations  $  L _ {a} : A \rightarrow A $,
 +
$  x \mapsto ax $,  
 +
$  a \in A $,  
 +
and the identity.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397040.png" /> be the transformation algebra of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397041.png" />, i.e. the algebra generated by the (say) left transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397044.png" />, and the identity.
+
A non-associative, commutative algebra $  A $
 +
is a genetic algebra if and only if for every  $  T \in T ( A) $,
 +
$  T = f ( L _ {a _ {1}  } \dots L _ {a _ {k}  } ) $,  
 +
the coefficients of the characteristic polynomial are functions of  $  \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $
 +
only.
  
A non-associative, commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397045.png" /> is a genetic algebra if and only if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397047.png" />, the coefficients of the characteristic polynomial are functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397048.png" /> only.
+
Historically, genetic algebras were first defined by this property (R.D. Schafer [[#References|[a5]]]). H. Gonshor [[#References|[a3]]] proved the equivalence with the first definition above. P. Holgate [[#References|[a4]]] proved that in a baric algebra  $  A $
 +
the weight  $  \omega $
 +
is uniquely determined if  $  \mathop{\rm ker}  \omega $
 +
is a nil ideal.
  
Historically, genetic algebras were first defined by this property (R.D. Schafer [[#References|[a5]]]). H. Gonshor [[#References|[a3]]] proved the equivalence with the first definition above. P. Holgate [[#References|[a4]]] proved that in a baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397049.png" /> the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397050.png" /> is uniquely determined if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397051.png" /> is a nil ideal.
+
Algebras in genetics originate from the work of I.M.H. Etherington [[#References|[a2]]], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or  $  2r $-
 +
ploid) individuals which differ genetically at one or several loci. Let  $  a _ {0} \dots a _ {n} $
 +
be the genetically different gametes. The state of the population can be described by the vector  $  ( \alpha _ {0} \dots \alpha _ {n} ) $
 +
of frequencies of gametes,
  
Algebras in genetics originate from the work of I.M.H. Etherington [[#References|[a2]]], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397052.png" />-ploid) individuals which differ genetically at one or several loci. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397053.png" /> be the genetically different gametes. The state of the population can be described by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397054.png" /> of frequencies of gametes,
+
$$
 +
0  \leq  \alpha _ {i}  \leq  1,\ \
 +
i = 0 \dots n; \ \
 +
\sum _ {i = 0 } ^ { n }
 +
\alpha _ {i}  = 1.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397055.png" /></td> </tr></table>
+
By random union of gametes  $  a _ {i} $
 +
and  $  a _ {j} $,
 +
zygotes  $  a _ {i} a _ {j} $
 +
are formed,  $  i, j = 0 \dots n $.
 +
In the absence of selection all zygotes have the same fertility. Let  $  \gamma _ {ijk} $
 +
be the relative frequency of gametes  $  a _ {k} $,
 +
$  k = 0 \dots n $,
 +
produced by a zygote  $  a _ {i} a _ {j} $,
 +
$  i, j = 0 \dots n $,
  
By random union of gametes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397057.png" />, zygotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397058.png" /> are formed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397059.png" />. In the absence of selection all zygotes have the same fertility. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397060.png" /> be the relative frequency of gametes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397062.png" />, produced by a zygote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397064.png" />,
+
$$ \tag{a1 }
 +
\left . \begin{array}{c}
 +
0 \leq  \gamma _ {ijk}  \leq  1,\ \
 +
i, j, k = 0 \dots n;
 +
\\
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\sum _ {k = 0 } ^ { n }
 +
\gamma _ {ijk}  = 1,\ \
 +
i, j = 0 \dots n.  
 +
\end{array}
 +
\right \}
 +
$$
  
Let the segregation rates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397066.png" /> be symmetric, i.e.
+
Let the segregation rates $  \gamma _ {ijk} $
 +
be symmetric, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
$$ \tag{a2 }
 +
\gamma _ {ijk}  = \gamma _ {jik} ,\ \
 +
i, j, k = 0 \dots n.
 +
$$
  
Consider the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397068.png" /> as abstract elements which are free over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397069.png" />. In the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397070.png" /> a multiplication is defined by
+
Consider the elements $  a _ {0} \dots a _ {n} $
 +
as abstract elements which are free over the field $  \mathbf R $.  
 +
In the vector space $  V = \{ {\sum _ {i = 0 }  ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R ,  i = 0 \dots n } \} $
 +
a multiplication is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397071.png" /></td> </tr></table>
+
$$
 +
a _ {i} a _ {j}  = \
 +
\sum _ {k = 0 } ^ { n }
 +
\gamma _ {ijk} a _ {k} ,\ \
 +
i, j = 0 \dots n,
 +
$$
  
and its bilinear extension onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397072.png" />. Thereby <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397073.png" /> becomes a commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397074.png" />, the gametic algebra. Actual populations correspond to elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397075.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397077.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397078.png" />. Random union of populations corresponds to multiplication of the corresponding elements in the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397079.png" />. Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [[#References|[a2]]] or [[#References|[a7]]].
+
and its bilinear extension onto $  V \times V $.  
 +
Thereby $  V $
 +
becomes a commutative algebra $  G $,  
 +
the gametic algebra. Actual populations correspond to elements $  a = \sum _ {i = 0 }  ^ {n} \alpha _ {i} a _ {i} \in G $
 +
with 0 \leq  \alpha _ {i} \leq  1 $,  
 +
$  i = 0 \dots n $,  
 +
and $  \sum _ {i = 0 }  ^ {n} \alpha _ {i} = 1 $.  
 +
Random union of populations corresponds to multiplication of the corresponding elements in the algebra $  G $.  
 +
Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [[#References|[a2]]] or [[#References|[a7]]].
  
The zygotic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397080.png" /> is obtained from the gametic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397081.png" /> by duplication, i.e. as the symmetric tensor product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397082.png" /> with itself:
+
The zygotic algebra $  Z $
 +
is obtained from the gametic algebra $  G $
 +
by duplication, i.e. as the symmetric tensor product of $  G $
 +
with itself:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397083.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a3 }
 +
= G \otimes G/J,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397084.png" /></td> </tr></table>
+
$$
 +
J : = \left \{ {
 +
\sum _ {i \in I }
 +
( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : {
 +
x _ {i} , y _ {i} \in G,\
 +
i \in I,\
 +
| I | < \infty
 +
} \right \}
 +
.
 +
$$
  
The zygotic algebra describes the evolution of a population of diploid (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397085.png" />-ploid) individuals under random mating.
+
The zygotic algebra describes the evolution of a population of diploid ( $  2r $-
 +
ploid) individuals under random mating.
  
A baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397086.png" /> with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397087.png" /> is called a train algebra if the coefficients of the rank polynomial of all principal powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397088.png" /> depend only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397089.png" />, i.e. if this polynomial has the form
+
A baric algebra $  A $
 +
with weight $  \omega $
 +
is called a train algebra if the coefficients of the rank polynomial of all principal powers of $  x $
 +
depend only on $  \omega ( x) $,  
 +
i.e. if this polynomial has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397090.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
$$ \tag{a4 }
 +
x  ^ {r} +
 +
\beta _ {1} \omega ( x)
 +
x ^ {r - 1 } + \dots +
 +
\beta _ {r - 1 }
 +
\omega ^ {r - 1 } ( x)
 +
= 0.
 +
$$
  
A baric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397091.png" /> with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397092.png" /> is called a special train algebra if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397093.png" /> is nilpotent and the principal powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397095.png" />, are ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397096.png" />, cf. [[#References|[a2]]]. Etherington [[#References|[a2]]] proved that every special train algebra is a train algebra. Schafer [[#References|[a5]]] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [[#References|[a7]]], Chapts. 3, 4.
+
A baric algebra $  A $
 +
with weight $  \omega $
 +
is called a special train algebra if $  N = \mathop{\rm ker}  \omega $
 +
is nilpotent and the principal powers $  N  ^ {i} $,  
 +
$  i \in N $,  
 +
are ideals of $  A $,  
 +
cf. [[#References|[a2]]]. Etherington [[#References|[a2]]] proved that every special train algebra is a train algebra. Schafer [[#References|[a5]]] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [[#References|[a7]]], Chapts. 3, 4.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397097.png" /> be a baric algebra with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397098.png" />. If all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397099.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970100.png" /> satisfy the identity
+
Let $  A $
 +
be a baric algebra with weight $  \omega $.  
 +
If all elements $  x $
 +
of $  A $
 +
satisfy the identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970101.png" /></td> </tr></table>
+
$$
 +
x  ^ {2} x  ^ {2}  = \
 +
\omega  ^ {2} ( x) x  ^ {2} ,
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970102.png" /> is called a Bernstein algebra. Every Bernstein algebra possesses an idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970103.png" />. The decomposition with respect to this idempotent reads
+
then $  A $
 +
is called a [[Bernstein algebra]]. Every Bernstein algebra possesses an idempotent $  e $.  
 +
The decomposition with respect to this idempotent reads
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970104.png" /></td> </tr></table>
+
$$
 +
= E \oplus U \oplus V,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970105.png" /></td> </tr></table>
+
$$
 +
= e \cdot K,\ \
 +
\left . U  =   \mathop{\rm Im}  L _ {e} \right | _ {N} ,\ \
 +
=   \mathop{\rm ker}  L _ {e} .
 +
$$
  
The integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970107.png" /> are invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970108.png" />, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970109.png" /> is called the type of the Bernstein algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g043970110.png" />, cf. [[#References|[a7]]], Chapt. 9. In [[#References|[a6]]] necessary and sufficient conditions have been given for a Bernstein algebra to be a [[Jordan algebra|Jordan algebra]].
+
The integers $  p = \mathop{\rm dim}  U $
 +
and $  q = \mathop{\rm dim}  V $
 +
are invariants of $  A $,  
 +
the pair $  ( p + 1 , q) $
 +
is called the type of the Bernstein algebra $  A $,  
 +
cf. [[#References|[a7]]], Chapt. 9. In [[#References|[a6]]] necessary and sufficient conditions have been given for a Bernstein algebra to be a [[Jordan algebra|Jordan algebra]].
  
Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the Hardy–Weinberg law, which states that a randomly mating population is in equilibrium after one generation.
+
Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the [[Hardy–Weinberg law]], which states that a randomly mating population is in equilibrium after one generation.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Bernstein,  "Principe de stationarité et généralisation de la loi de Mendel"  ''C.R. Acad. Sci. Paris'' , '''177'''  (1923)  pp. 581–584</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M.H. Etherington,  "Genetic algebras"  ''Proc. R. Soc. Edinburgh'' , '''59'''  (1939)  pp. 242–258</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Gonshor,  "Contributions to genetic algebras"  ''Proc. Edinburgh Math. Soc. (2)'' , '''17'''  (1971)  pp. 289–298</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P. Holgate,  "Characterizations of genetic algebras"  ''J. London Math. Soc. (2)'' , '''6'''  (1972)  pp. 169–174</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R.D. Schafer,  "Structure of genetic algebras"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 121–135</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Walcher,  "Bernstein algebras which are Jordan algebras"  ''Arch. Math.'' , '''50'''  (1988)  pp. 218–222</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Wörz-Busekros,  "Algebras in genetics" , ''Lect. notes in biomath.'' , '''36''' , Springer  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Bernstein,  "Principe de stationarité et généralisation de la loi de Mendel"  ''C.R. Acad. Sci. Paris'' , '''177'''  (1923)  pp. 581–584</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M.H. Etherington,  "Genetic algebras"  ''Proc. R. Soc. Edinburgh'' , '''59'''  (1939)  pp. 242–258</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Gonshor,  "Contributions to genetic algebras"  ''Proc. Edinburgh Math. Soc. (2)'' , '''17'''  (1971)  pp. 289–298</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P. Holgate,  "Characterizations of genetic algebras"  ''J. London Math. Soc. (2)'' , '''6'''  (1972)  pp. 169–174</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R.D. Schafer,  "Structure of genetic algebras"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 121–135</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Walcher,  "Bernstein algebras which are Jordan algebras"  ''Arch. Math.'' , '''50'''  (1988)  pp. 218–222</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Wörz-Busekros,  "Algebras in genetics" , ''Lect. notes in biomath.'' , '''36''' , Springer  (1980)</TD></TR></table>

Latest revision as of 19:41, 5 June 2020


Let $ A $ be a non-associative, commutative algebra of dimension $ n + 1 $ over a field $ K $.

Let the field $ L $ be an algebraic extension of $ K $, and let $ A _ {L} $ be the extension of $ A $ over $ L $( cf. also Extension of a field). Let $ A _ {L} $ admit a basis $ \{ c _ {0} , c _ {1} \dots c _ {n} \} $, $ c _ {0} \in A $, with structure constants $ \lambda _ {ijk} $, defined by

$$ c _ {i} c _ {j} = \ \sum _ {k = 0 } ^ { n } \lambda _ {ijk} c _ {k} ,\ \ i, j = 0 \dots n, $$

which have the following properties:

$ \lambda _ {000} = 1 $,

$ \lambda _ {0jk} = 0 $ for $ k < j $, $ j = 1 \dots n $; $ k = 0 \dots n $,

$ \lambda _ {ijk} = 0 $ for $ k \leq \max \{ i, j \} $, $ i, j = 1 \dots n $; $ k = 0 \dots n $.

Then $ A $ is called a genetic algebra and $ \{ c _ {0} \dots c _ {n} \} $ is called a canonical basis of $ A $. The multiplication constants $ \lambda _ {0ii} $, $ i = 0 \dots n $, are invariants of a genetic algebra; they are called the train roots of $ A $.

An algebra $ A $ is called a baric algebra if there exists a non-trivial algebra homomorphism $ \omega : A \rightarrow K $; $ \omega $ is called a weight homomorphism or simply a weight. Every genetic algebra $ A $ is baric with $ \omega : A \rightarrow K $ defined by $ \omega ( c _ {0} ) = 1 $, $ \omega ( c _ {i} ) = 0 $, $ i = 1 \dots n $; and $ \mathop{\rm ker} \omega $ is an $ n $- dimensional ideal of $ A $.

Let $ T ( A) $ be the transformation algebra of the algebra $ A $, i.e. the algebra generated by the (say) left transformations $ L _ {a} : A \rightarrow A $, $ x \mapsto ax $, $ a \in A $, and the identity.

A non-associative, commutative algebra $ A $ is a genetic algebra if and only if for every $ T \in T ( A) $, $ T = f ( L _ {a _ {1} } \dots L _ {a _ {k} } ) $, the coefficients of the characteristic polynomial are functions of $ \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $ only.

Historically, genetic algebras were first defined by this property (R.D. Schafer [a5]). H. Gonshor [a3] proved the equivalence with the first definition above. P. Holgate [a4] proved that in a baric algebra $ A $ the weight $ \omega $ is uniquely determined if $ \mathop{\rm ker} \omega $ is a nil ideal.

Algebras in genetics originate from the work of I.M.H. Etherington [a2], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or $ 2r $- ploid) individuals which differ genetically at one or several loci. Let $ a _ {0} \dots a _ {n} $ be the genetically different gametes. The state of the population can be described by the vector $ ( \alpha _ {0} \dots \alpha _ {n} ) $ of frequencies of gametes,

$$ 0 \leq \alpha _ {i} \leq 1,\ \ i = 0 \dots n; \ \ \sum _ {i = 0 } ^ { n } \alpha _ {i} = 1. $$

By random union of gametes $ a _ {i} $ and $ a _ {j} $, zygotes $ a _ {i} a _ {j} $ are formed, $ i, j = 0 \dots n $. In the absence of selection all zygotes have the same fertility. Let $ \gamma _ {ijk} $ be the relative frequency of gametes $ a _ {k} $, $ k = 0 \dots n $, produced by a zygote $ a _ {i} a _ {j} $, $ i, j = 0 \dots n $,

$$ \tag{a1 } \left . \begin{array}{c} 0 \leq \gamma _ {ijk} \leq 1,\ \ i, j, k = 0 \dots n; \\ \sum _ {k = 0 } ^ { n } \gamma _ {ijk} = 1,\ \ i, j = 0 \dots n. \end{array} \right \} $$

Let the segregation rates $ \gamma _ {ijk} $ be symmetric, i.e.

$$ \tag{a2 } \gamma _ {ijk} = \gamma _ {jik} ,\ \ i, j, k = 0 \dots n. $$

Consider the elements $ a _ {0} \dots a _ {n} $ as abstract elements which are free over the field $ \mathbf R $. In the vector space $ V = \{ {\sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R , i = 0 \dots n } \} $ a multiplication is defined by

$$ a _ {i} a _ {j} = \ \sum _ {k = 0 } ^ { n } \gamma _ {ijk} a _ {k} ,\ \ i, j = 0 \dots n, $$

and its bilinear extension onto $ V \times V $. Thereby $ V $ becomes a commutative algebra $ G $, the gametic algebra. Actual populations correspond to elements $ a = \sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} \in G $ with $ 0 \leq \alpha _ {i} \leq 1 $, $ i = 0 \dots n $, and $ \sum _ {i = 0 } ^ {n} \alpha _ {i} = 1 $. Random union of populations corresponds to multiplication of the corresponding elements in the algebra $ G $. Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [a2] or [a7].

The zygotic algebra $ Z $ is obtained from the gametic algebra $ G $ by duplication, i.e. as the symmetric tensor product of $ G $ with itself:

$$ \tag{a3 } Z = G \otimes G/J, $$

where

$$ J : = \left \{ { \sum _ {i \in I } ( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : { x _ {i} , y _ {i} \in G,\ i \in I,\ | I | < \infty } \right \} . $$

The zygotic algebra describes the evolution of a population of diploid ( $ 2r $- ploid) individuals under random mating.

A baric algebra $ A $ with weight $ \omega $ is called a train algebra if the coefficients of the rank polynomial of all principal powers of $ x $ depend only on $ \omega ( x) $, i.e. if this polynomial has the form

$$ \tag{a4 } x ^ {r} + \beta _ {1} \omega ( x) x ^ {r - 1 } + \dots + \beta _ {r - 1 } \omega ^ {r - 1 } ( x) x = 0. $$

A baric algebra $ A $ with weight $ \omega $ is called a special train algebra if $ N = \mathop{\rm ker} \omega $ is nilpotent and the principal powers $ N ^ {i} $, $ i \in N $, are ideals of $ A $, cf. [a2]. Etherington [a2] proved that every special train algebra is a train algebra. Schafer [a5] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [a7], Chapts. 3, 4.

Let $ A $ be a baric algebra with weight $ \omega $. If all elements $ x $ of $ A $ satisfy the identity

$$ x ^ {2} x ^ {2} = \ \omega ^ {2} ( x) x ^ {2} , $$

then $ A $ is called a Bernstein algebra. Every Bernstein algebra possesses an idempotent $ e $. The decomposition with respect to this idempotent reads

$$ A = E \oplus U \oplus V, $$

where

$$ E = e \cdot K,\ \ \left . U = \mathop{\rm Im} L _ {e} \right | _ {N} ,\ \ V = \mathop{\rm ker} L _ {e} . $$

The integers $ p = \mathop{\rm dim} U $ and $ q = \mathop{\rm dim} V $ are invariants of $ A $, the pair $ ( p + 1 , q) $ is called the type of the Bernstein algebra $ A $, cf. [a7], Chapt. 9. In [a6] necessary and sufficient conditions have been given for a Bernstein algebra to be a Jordan algebra.

Bernstein algebras were introduced by S. Bernstein [a1] as a generalization of the Hardy–Weinberg law, which states that a randomly mating population is in equilibrium after one generation.

References

[a1] S. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" C.R. Acad. Sci. Paris , 177 (1923) pp. 581–584
[a2] I.M.H. Etherington, "Genetic algebras" Proc. R. Soc. Edinburgh , 59 (1939) pp. 242–258
[a3] H. Gonshor, "Contributions to genetic algebras" Proc. Edinburgh Math. Soc. (2) , 17 (1971) pp. 289–298
[a4] P. Holgate, "Characterizations of genetic algebras" J. London Math. Soc. (2) , 6 (1972) pp. 169–174
[a5] R.D. Schafer, "Structure of genetic algebras" Amer. J. Math. , 71 (1949) pp. 121–135
[a6] S. Walcher, "Bernstein algebras which are Jordan algebras" Arch. Math. , 50 (1988) pp. 218–222
[a7] A. Wörz-Busekros, "Algebras in genetics" , Lect. notes in biomath. , 36 , Springer (1980)
How to Cite This Entry:
Genetic algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Genetic_algebra&oldid=15189
This article was adapted from an original article by A. Wörz-Busekros (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article