Namespaces
Variants
Actions

Difference between revisions of "Gauss-Lucas theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Gauss–Lucas theorem to Gauss-Lucas theorem: ascii title)
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''Gauss theorem''
 
''Gauss theorem''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110080/g1100801.png" /> be a complex polynomial, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110080/g1100802.png" />. Then the zeros of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110080/g1100803.png" /> are inside the convex polygon spanned by the zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110080/g1100804.png" />.
+
Let $f(z)$ be a complex polynomial, i.e., $f(z)\in\mathbf C[z]$. Then the zeros of the derivative $f'(z)$ are inside the convex polygon spanned by the zeros of $f(z)$.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Analytic function theory" , '''1''' , Chelsea, reprint  (1982)  pp. 84</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Henrici,  "Applied and computational complex analysis" , '''I''' , Wiley, reprint  (1988)  pp. 463ff</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B.J. Lewin,  "Nullstellenverteilung ganzer Funktionen" , Akademie Verlag  (1962)  pp. 355</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Analytic function theory" , '''1''' , Chelsea, reprint  (1982)  pp. 84</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Henrici,  "Applied and computational complex analysis" , '''I''' , Wiley, reprint  (1988)  pp. 463ff</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B.J. Lewin,  "Nullstellenverteilung ganzer Funktionen" , Akademie Verlag  (1962)  pp. 355</TD></TR></table>

Latest revision as of 17:21, 28 October 2014

Gauss theorem

Let $f(z)$ be a complex polynomial, i.e., $f(z)\in\mathbf C[z]$. Then the zeros of the derivative $f'(z)$ are inside the convex polygon spanned by the zeros of $f(z)$.

References

[a1] E. Hille, "Analytic function theory" , 1 , Chelsea, reprint (1982) pp. 84
[a2] P. Henrici, "Applied and computational complex analysis" , I , Wiley, reprint (1988) pp. 463ff
[a3] B.J. Lewin, "Nullstellenverteilung ganzer Funktionen" , Akademie Verlag (1962) pp. 355
How to Cite This Entry:
Gauss-Lucas theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss-Lucas_theorem&oldid=22495
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article