Namespaces
Variants
Actions

Density of a probability distribution

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


probability density

The derivative of the distribution function corresponding to an absolutely-continuous probability measure.

Let $ X $ be a random vector taking values in an $ n $- dimensional Euclidean space $ \mathbf R ^ {n} $ $ ( n \geq 1) $, let $ F $ be its distribution function, and let there exist a non-negative function $ f $ such that

$$ F( x _ {1} \dots x _ {n} ) = \int\limits _ { - \infty } ^ { {x _ 1 } } \dots \int\limits _ { - \infty } ^ { {x _ n } } f( u _ {1} \dots u _ {n} ) du _ {1} \dots du _ {n} $$

for any real $ x _ {1} \dots x _ {n} $. Then $ f $ is called the probability density of $ X $, and for any Borel set $ A\subset \mathbf R ^ {n} $,

$$ {\mathsf P} \{ X \in A \} = {\int\limits \dots \int\limits } _ { A } f( u _ {1} \dots u _ {n} ) du _ {1} {} \dots du _ {n} . $$

Any non-negative integrable function $ f $ satisfy the condition

$$ \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty f( x _ {1} \dots x _ {n} ) dx _ {1} \dots dx _ {n} = 1 $$

is the probability density of some random vector.

If two random vectors $ X $ and $ Y $ taking values in $ \mathbf R ^ {n} $ are independent and have probability densities $ f $ and $ g $ respectively, then the random vector $ X+ Y $ has the probability density $ h $ that is the convolution of $ f $ and $ g $:

$$ h( x _ {1} \dots x _ {n} ) = $$

$$ = \ \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty f( x _ {1} - u _ {1} \dots x _ {n} - u _ {n} ) g( u _ {1} \dots u _ {n} ) \times $$

$$ \times du _ {1} \dots du _ {n\ } = $$

$$ = \ \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty f( u _ {1} \dots u _ {n} ) g( x _ {1} - u _ {1} \dots x _ {n} - u _ {n} ) \times $$

$$ \times \ du _ {1} \dots du _ {n} . $$

Let $ X = ( X _ {1} \dots X _ {n} ) $ and $ Y = ( Y _ {1} \dots Y _ {m} ) $ be random vectors taking values in $ \mathbf R ^ {n} $ and $ \mathbf R ^ {m} $ $ ( n, m \geq 1) $ and having probability densities $ f $ and $ g $ respectively, and let $ Z = ( X _ {1} \dots X _ {n} , Y _ {1} \dots Y _ {m} ) $ be a random vector in $ \mathbf R ^ {n+} m $. If then $ X $ and $ Y $ are independent, $ Z $ has the probability density $ h $, which is called the joint probability density of the random vectors $ X $ and $ Y $, where

$$ \tag{1 } h( t _ {1} \dots t _ {n+} m ) = f( t _ {1} \dots t _ {n} ) g( t _ {n+} 1 \dots t _ {n+} m ). $$

Conversely, if $ Z $ has a probability density that satisfies (1), then $ X $ and $ Y $ are independent.

The characteristic function $ \phi $ of a random vector $ X $ having a probability density $ f $ is expressed by

$$ \phi ( t _ {1} \dots t _ {n} ) = $$

$$ = \ \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty e ^ {i( t _ {1} x _ {1} + \dots + t _ {n} x _ {n} ) } f( x _ {1} \dots x _ {n} ) dx _ {1} \dots dx _ {n} , $$

where if $ \phi $ is absolutely integrable then $ f $ is a bounded continuous function, and

$$ f( x _ {1} \dots x _ {n} ) = $$

$$ = \ \frac{1}{( 2 \pi ) ^ {n} } \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty e ^ {- i( t _ {1} x _ {1} + \dots + t _ {n} x _ {n} ) } \phi ( t _ {1} \dots t _ {n} ) dt _ {1} \dots dt _ {n} . $$

The probability density $ f $ and the corresponding characteristic function $ \phi $ are related also by the following relation (Plancherel's identity): The function $ f ^ { 2 } $ is integrable if and only if the function $ | \phi | ^ {2} $ is integrable, and in that case

$$ \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty f ^ { 2 } ( x _ {1} \dots x _ {n} ) dx _ {1} \dots dx _ {n\ } = $$

$$ = \ \frac{1}{( 2 \pi ) ^ {n} } \int\limits _ {- \infty } ^ \infty \dots \int\limits _ {- \infty } ^ \infty | \phi ( t _ {1} \dots t _ {n} ) | ^ {2} dt _ {1} \dots dt _ {n} . $$

Let $ ( \Omega , \mathfrak A) $ be a measurable space, and let $ \nu $ and $ \mu $ be $ \sigma $- finite measures on $ ( \Omega , \mathfrak A) $ with $ \nu $ absolutely continuous with respect to $ \mu $, i.e. $ \mu ( A) = 0 $ implies $ \nu ( A) = 0 $, $ A \in \mathfrak A $. In that case there exists on $ ( \Omega , \mathfrak A) $ a non-negative measurable function $ f $ such that

$$ \nu ( A) = \int\limits _ { A } f d \mu $$

for any $ A \in \mathfrak A $. The function $ f $ is called the Radon–Nikodým derivative of $ \nu $ with respect to $ \mu $, while if $ \nu $ is a probability measure, it is also the probability density of $ \nu $ relative to $ \mu $.

A concept closely related to the probability density is that of a dominated family of distributions. A family of probability distributions $ \mathfrak P $ on a measurable space $ ( \Omega , \mathfrak A) $ is called dominated if there exists a $ \sigma $- finite measure $ \mu $ on $ ( \Omega , \mathfrak A) $ such that each probability measure from $ \mathfrak P $ has a probability density relative to $ \mu $( or, what is the same, if each measure from $ \mathfrak P $ is absolutely continuous with respect to $ \mu $). The assumption of dominance is important in certain theorems in mathematical statistics.

References

[1] Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes", Springer (1969) (Translated from Russian)
[2] W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971)
[3] E.L. Lehmann, "Testing statistical hypotheses", Wiley (1986)
How to Cite This Entry:
Density of a probability distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Density_of_a_probability_distribution&oldid=46629
This article was adapted from an original article by N.G. Ushakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article