Namespaces
Variants
Actions

Difference between revisions of "Correlation inequalities"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
[[Correlation|Correlation]] between variables in multivariate statistics (cf. also [[Multi-dimensional statistical analysis|Multi-dimensional statistical analysis]]) [[#References|[a19]]] has motivated classes of inequalities on subsets of a base set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104201.png" /> that are referred to as correlation inequalities. They are often stated deterministically but usually have probabilistic interpretations. For example, suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104202.png" /> is the family of all subsets of a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104203.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104204.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104205.png" /> be order ideals or down-sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104206.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104207.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c1104209.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042010.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042011.png" />. Then, [[#References|[a13]]], [[#References|[a16]]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042012.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042013.png" /> is the uniform probability measure (cf. also [[Probability measure|Probability measure]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042014.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042015.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042016.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042017.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042018.png" />. Hence, with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042021.png" /> are correlated whenever both are down-sets.
+
<!--
 +
c1104201.png
 +
$#A+1 = 209 n = 1
 +
$#C+1 = 209 : ~/encyclopedia/old_files/data/C110/C.1100420 Correlation inequalities
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
As general definitions, one says with respect to a probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042022.png" /> on an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042023.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042024.png" /> that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042025.png" /> are positively correlated if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042026.png" /> and non-negatively correlated if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042027.png" />. Inequality reversals define negative correlation and non-positive correlation, respectively. The instances of these inequalities and generalizations described below assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042028.png" /> is a finite set partially ordered by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042029.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042030.png" /> is irreflexive (never <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042031.png" />) and transitive: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042033.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042034.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
[[Correlation|Correlation]] between variables in multivariate statistics (cf. also [[Multi-dimensional statistical analysis|Multi-dimensional statistical analysis]]) [[#References|[a19]]] has motivated classes of inequalities on subsets of a base set  $  S $
 +
that are referred to as correlation inequalities. They are often stated deterministically but usually have probabilistic interpretations. For example, suppose  $  S $
 +
is the family of all subsets of a finite set  $  \{ 1 \dots n \} $,
 +
and let  $  A $
 +
and  $  B $
 +
be order ideals or down-sets in  $  ( S, \subset  ) $:
 +
$  a \subset  b \in A $
 +
implies  $  a \in A $,
 +
$  a \subset  b \in B $
 +
implies  $  a \in B $,
 +
with  $  A, B \subseteq S $.
 +
Then, [[#References|[a13]]], [[#References|[a16]]],  $  2  ^ {n} | {A \cap B } | \geq  | A | \cdot | B | $.
 +
When  $  \mu $
 +
is the uniform probability measure (cf. also [[Probability measure|Probability measure]]) on  $  2  ^ {S} $,
 +
so that  $  \mu ( a ) = \mu ( \{ a \} ) = 2 ^ {- n } $
 +
for every  $  a \in S $,
 +
and  $  \mu ( A ) = | A | 2 ^ {- n } $,
 +
one has  $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $.
 +
Hence, with respect to  $  \mu $,
 +
$  A $
 +
and  $  B $
 +
are correlated whenever both are down-sets.
 +
 
 +
As general definitions, one says with respect to a probability measure $  \mu $
 +
on an algebra $  {\mathcal E} $
 +
of subsets of $  S $
 +
that $  A, B \in {\mathcal E} $
 +
are positively correlated if $  \mu ( A \cap B ) > \mu ( A ) \mu ( B ) $
 +
and non-negatively correlated if $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $.  
 +
Inequality reversals define negative correlation and non-positive correlation, respectively. The instances of these inequalities and generalizations described below assume that $  S $
 +
is a finite set partially ordered by $  \prec $
 +
so that $  \prec $
 +
is irreflexive (never $  a \prec a $)  
 +
and transitive: $  a \prec b $
 +
and $  b \prec c $
 +
imply $  a \prec c $.
  
 
==Inequalities for distributive lattices.==
 
==Inequalities for distributive lattices.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042035.png" /> be a [[Distributive lattice|distributive lattice]] with join <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042036.png" /> and meet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042037.png" /> defined by
+
Let $  ( S, \prec ) $
 +
be a [[Distributive lattice|distributive lattice]] with join $  a \lor b $
 +
and meet $  a \wedge b $
 +
defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042038.png" /></td> </tr></table>
+
$$
 +
a \lor b = \min  \left \{ {z \in S } : {a \cle z, b \cle z } \right \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042039.png" /></td> </tr></table>
+
$$
 +
a \wedge b = \max  \left \{ {z \in S } : {z \cle a, z \cle b } \right \} .
 +
$$
  
Distributivity says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042040.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042041.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042042.png" /> is non-decreasing if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042043.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042044.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042046.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042047.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042048.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042049.png" />. The join and meet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042051.png" /> can be extended to subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042052.png" /> by
+
Distributivity says that $  a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $
 +
for all $  a,b,c \in S $.  
 +
A mapping $  f : S \rightarrow \mathbf R $
 +
is non-decreasing if $  a \prec b $
 +
implies $  f ( a ) \leq  f ( b ) $
 +
for all $  a,b \in S $,  
 +
and $  f ( A ) $
 +
is defined as $  \sum _ {a \in A }  f ( a ) $
 +
for $  A \subseteq S $,  
 +
with $  f ( \emptyset ) = 0 $.  
 +
The join and meet $  \lor $
 +
and $  \wedge $
 +
can be extended to subsets $  A, B \subseteq S $
 +
by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042053.png" /></td> </tr></table>
+
$$
 +
A \lor B = \left \{ {a \lor b } : {a \in A, b \in B } \right \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042054.png" /></td> </tr></table>
+
$$
 +
A \wedge B = \left \{ {a \wedge b } : {a \in A, b \in B } \right \} ,
 +
$$
  
with the understanding that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042055.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042056.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042057.png" /> is empty.
+
with the understanding that $  A \lor B = A \wedge B = \emptyset $
 +
if $  A $
 +
or $  B $
 +
is empty.
  
The pre-eminent correlation inequality is the [[Ahlswede–Daykin inequality|Ahlswede–Daykin inequality]] [[#References|[a1]]], also called the four-functions inequality [[#References|[a2]]]. It says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042058.png" /> satisfy
+
The pre-eminent correlation inequality is the [[Ahlswede–Daykin inequality|Ahlswede–Daykin inequality]] [[#References|[a1]]], also called the four-functions inequality [[#References|[a2]]]. It says that if $  {f _ {1} , f _ {2} , f _ {3} , f _ {4} } : S \rightarrow {[ 0, \infty ) } $
 +
satisfy
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042059.png" /></td> </tr></table>
+
$$
 +
f _ {1} ( a ) f _ {2} ( b ) \leq  f _ {3} ( a \lor b ) f _ {4} ( a \wedge b )  \textrm{ for  all  }  a, b \in S,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042060.png" /></td> </tr></table>
+
$$
 +
f _ {1} ( A ) f _ {2} ( B ) \leq  f _ {3} ( A \lor B ) f _ {4} ( A \wedge B )  \textrm{ for  all  }  A, B \subseteq S .
 +
$$
  
This is a very powerful result that allows efficient proofs of many other correlation inequalities [[#References|[a2]]], [[#References|[a7]]], [[#References|[a10]]], [[#References|[a23]]]. One unusual application [[#References|[a8]]] concerns match sets of orders of a deck of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042061.png" /> cards numbered <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042062.png" /> through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042063.png" />. For each order, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042064.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042066.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042067.png" /> is the uniform distribution on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042068.png" /> orders, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042069.png" />. Hence, if the match set of a well-shuffled deck contains an odd number, this can only increase our confidence that it contains an even number.
+
This is a very powerful result that allows efficient proofs of many other correlation inequalities [[#References|[a2]]], [[#References|[a7]]], [[#References|[a10]]], [[#References|[a23]]]. One unusual application [[#References|[a8]]] concerns match sets of orders of a deck of $  52 $
 +
cards numbered $  1 $
 +
through $  52 $.  
 +
For each order, $  M = \{ k : {\textrm{ card  }  k  \textrm{ is  the  }  k \textrm{ th  card  at  the  top  of  the  deck  } } \} $.  
 +
Let $  A = \{ M : {\textrm{ an  even  }  k \in M } \} $
 +
and $  B = \{ M : {\textrm{ an  odd  }  k \in M } \} $.  
 +
When $  \mu $
 +
is the uniform distribution on the $  52! $
 +
orders, $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $.  
 +
Hence, if the match set of a well-shuffled deck contains an odd number, this can only increase our confidence that it contains an even number.
  
The most important correlation inequality historically is the [[FKG inequality|FKG inequality]] [[#References|[a9]]] (also known as the Fortuin–Kasteleyn–Ginibre inequality), which says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042070.png" /> is log supermodular, i.e.,
+
The most important correlation inequality historically is the [[FKG inequality|FKG inequality]] [[#References|[a9]]] (also known as the Fortuin–Kasteleyn–Ginibre inequality), which says that if $  \eta : S \rightarrow {[ 0, \infty ) } $
 +
is log supermodular, i.e.,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042071.png" /></td> </tr></table>
+
$$
 +
\eta ( a ) \eta ( b ) \leq  \eta ( a \lor b ) \eta ( a \wedge b )  \textrm{ for  all  }  a,b \in S,
 +
$$
  
and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042073.png" /> are non-decreasing, then
+
and if $  f : S \rightarrow \mathbf R $
 +
and $  g : S \rightarrow \mathbf R $
 +
are non-decreasing, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042074.png" /></td> </tr></table>
+
$$
 +
\left [ \sum _ { S } \eta ( a ) f ( a ) \right ] \left [ \sum _ { S } \eta ( a ) g ( a ) \right ] \leq
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042075.png" /></td> </tr></table>
+
$$
 +
\leq 
 +
\left [ \sum _ { S } \eta ( a ) \right ] \left [ \sum _ { S } \eta ( a ) f ( a ) g ( a ) \right ] .
 +
$$
  
This can be written in terms of the [[Mathematical expectation|mathematical expectation]] operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042076.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042077.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042078.png" /> is a [[Boolean algebra|Boolean algebra]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042079.png" /> is a log supermodular [[Probability measure|probability measure]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042081.png" />. Suitable definitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042082.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042083.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042084.png" /> co-domains show that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042085.png" /> are non-negatively correlated when both are up-sets or order filters, given log supermodularity.
+
This can be written in terms of the [[Mathematical expectation|mathematical expectation]] operation $  {\mathsf E} _  \eta  $
 +
as $  {\mathsf E} _  \eta  ( f ) {\mathsf E} _  \eta  ( g ) \leq  {\mathsf E} _  \eta  ( fg ) $,  
 +
when $  S $
 +
is a [[Boolean algebra|Boolean algebra]] and $  \eta $
 +
is a log supermodular [[Probability measure|probability measure]] with $  \lor = \cup $
 +
and $  \wedge = \cap $.  
 +
Suitable definitions of $  f $
 +
and $  g $
 +
with $  \{ 0,1 \} $
 +
co-domains show that $  A, B \subseteq S $
 +
are non-negatively correlated when both are up-sets or order filters, given log supermodularity.
  
Another notable result is the [[Holley inequality|Holley inequality]] [[#References|[a12]]]. Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042087.png" /> satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042088.png" /> along with the following inequality that generalizes log supermodularity and is itself generalized by the four-function Ahlswede–Daykin hypothesis:
+
Another notable result is the [[Holley inequality|Holley inequality]] [[#References|[a12]]]. Suppose $  {\eta _ {1} } : S \rightarrow {[ 0, \infty ) } $
 +
and  $  {\eta _ {2} } : S \rightarrow {[ 0, \infty ) } $
 +
satisfy $  \sum _ {S} \eta _ {1} ( a ) = \sum _ {S} \eta _ {2} ( a ) $
 +
along with the following inequality that generalizes log supermodularity and is itself generalized by the four-function Ahlswede–Daykin hypothesis:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042089.png" /></td> </tr></table>
+
$$
 +
\eta _ {1} ( a ) \eta _ {2} ( b ) \leq  \eta _ {1} ( a \lor b ) \eta _ {2} ( a \wedge b )  \textrm{ for  all  }  a,b \in S .
 +
$$
  
Then the Holley inequality says that for every non-decreasing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042090.png" />,
+
Then the Holley inequality says that for every non-decreasing $  f : S \rightarrow \mathbf R $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042091.png" /></td> </tr></table>
+
$$
 +
\sum _ { S } f ( a ) \eta _ {1} ( a ) \geq  \sum _ { S } f ( a ) \eta _ {2} ( a ) .
 +
$$
  
Simple proofs of the FKG and Holley inequalities follow from the Ahlswede–Daykin inequality by suitable choices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042092.png" /> through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042093.png" />. Also, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042094.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042095.png" />, log supermodularity on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042096.png" /> implies log supermodularity on the subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042097.png" />; when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042098.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042099.png" />, one obtains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420100.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420101.png" />, which is equivalent to distributivity [[#References|[a5]]] for an ordered lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420102.png" />.
+
Simple proofs of the FKG and Holley inequalities follow from the Ahlswede–Daykin inequality by suitable choices of $  f _ {1} $
 +
through $  f _ {4} $.  
 +
Also, when $  f _ {i} = \eta $
 +
for all $  i $,  
 +
log supermodularity on $  S $
 +
implies log supermodularity on the subsets of $  S $;  
 +
when $  f _ {i} \equiv 1 $
 +
for all $  i $,  
 +
one obtains $  | A | \cdot | B | \leq  | {A \lor B } | \cdot | {A \wedge B } | $
 +
for all $  A,B \subseteq S $,  
 +
which is equivalent to distributivity [[#References|[a5]]] for an ordered lattice $  ( S, \prec ) $.
  
 
==Systems of subsets.==
 
==Systems of subsets.==
Several inequalities for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420103.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420104.png" /> is the family of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420105.png" /> have already been given. Log supermodularity for a probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420106.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420107.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420108.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420109.png" />, and when this holds, the FKG inequality says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420110.png" /> for non-decreasing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420111.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420112.png" /> and implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420113.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420114.png" />. In addition, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420115.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420116.png" /> are down-sets or up-sets, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420117.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420118.png" /> is uniform, in which case log supermodularity is automatic, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420119.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420120.png" /> is an up-set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420121.png" /> is a down-set, so the two are non-positively correlated when the complementary orientations obtain.
+
Several inequalities for $  ( S, \subset  ) $
 +
when $  S $
 +
is the family of subsets of $  \{ 1 \dots n \} $
 +
have already been given. Log supermodularity for a probability measure $  \mu $
 +
on $  2  ^ {S} $
 +
is defined as $  \mu ( a ) \mu ( b ) \leq  \mu ( a \cup b ) \mu ( a \cap b ) $
 +
for all $  a,b \in S $,  
 +
and when this holds, the FKG inequality says that $  {\mathsf E} _  \mu  ( f ) {\mathsf E} _  \mu  ( g ) \leq  {\mathsf E} _  \mu  ( fg ) $
 +
for non-decreasing $  f : S \rightarrow \mathbf R $
 +
and $  g : S \rightarrow \mathbf R $
 +
and implies that $  \mu ( A ) \mu ( B ) \leq  \mu ( A \lor B ) \mu ( A \wedge B ) $
 +
for all $  A,B \subseteq S $.  
 +
In addition, if $  A $
 +
and $  B $
 +
are down-sets or up-sets, then $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $.  
 +
When $  \mu $
 +
is uniform, in which case log supermodularity is automatic, $  2  ^ {n} | {A \cap B } | \leq  | A | \cdot | B | $
 +
if $  A $
 +
is an up-set and $  B $
 +
is a down-set, so the two are non-positively correlated when the complementary orientations obtain.
  
Another inequality involves set differences [[#References|[a14]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420122.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420123.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420124.png" />, and, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420125.png" />.
+
Another inequality involves set differences [[#References|[a14]]]. Let $  A - B = \{ {a \setminus  b } : {a \in A, b \in B } \} $
 +
for $  A, B \subseteq S $.  
 +
Then $  | {A - B } | \cdot | {B - A } | \geq  | A | \cdot | B | $,  
 +
and, in particular, $  | {A - A } | \geq  | A | $.
  
The match set of a permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420126.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420127.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420128.png" />. Assuming that all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420129.png" /> permutations are equally likely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420130.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420131.png" /> be the probability that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420132.png" />. Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420133.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420134.png" /> and hence that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420135.png" /> is not log supermodular. However, there still is an FKG-like inequality [[#References|[a8]]], because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420136.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420137.png" /> are up-sets. This illustrates the non-necessity of log supermodularity in certain cases for a correlation inequality to hold.
+
The match set of a permutation $  \sigma $
 +
on $  \{ 1 \dots n \} $
 +
is defined as $  M ( \sigma ) = \{ {i \in \{ 1 \dots n \} } : {\sigma ( i ) = i } \} $.  
 +
Assuming that all $  n! $
 +
permutations are equally likely, let $  \mu ( a ) $
 +
for $  a \subseteq \{ 1 \dots n \} $
 +
be the probability that $  M ( \sigma ) = a $.  
 +
Note that $  \mu ( a ) = 0 $
 +
when $  | a | = n - 1 $
 +
and hence that $  \mu $
 +
is not log supermodular. However, there still is an FKG-like inequality [[#References|[a8]]], because $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $
 +
whenever $  A,B \subseteq S $
 +
are up-sets. This illustrates the non-necessity of log supermodularity in certain cases for a correlation inequality to hold.
  
 
==Linear extensions.==
 
==Linear extensions.==
Another class of correlation inequalities arises when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420138.png" /> is the set of linear extensions of a finite partially ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420139.png" /> and all members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420140.png" /> are equally likely. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420141.png" /> is a linear extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420142.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420143.png" /> is a partially ordered set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420144.png" /> and, for all distinct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420145.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420146.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420147.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420148.png" /> be the number of linear extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420149.png" />, so the probability law for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420150.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420151.png" />. By additivity, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420152.png" /> for each subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420153.png" /> of linear extensions.
+
Another class of correlation inequalities arises when $  S $
 +
is the set of linear extensions of a finite partially ordered set $  ( X, \prec ) $
 +
and all members of $  S $
 +
are equally likely. $  ( X, < _ {0} ) $
 +
is a linear extension of $  ( X, \prec ) $
 +
if $  ( X, < _ {0} ) $
 +
is a partially ordered set, $  \prec  \subseteq  < _ {0} $
 +
and, for all distinct $  x,y \in X $,  
 +
$  x < _ {0} y $
 +
or $  y < _ {0} x $.  
 +
Let $  N $
 +
be the number of linear extensions of $  ( X, \prec ) $,  
 +
so the probability law for $  S $
 +
is $  \mu ( a ) = 1/N $.  
 +
By additivity, $  \mu ( A ) = \sum _ {A} \mu ( a ) $
 +
for each subset $  A $
 +
of linear extensions.
  
A premier correlation inequality in this setting is the [[Fishburn–Shepp inequality|Fishburn–Shepp inequality]] [[#References|[a6]]], [[#References|[a18]]], also known as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420155.png" /> inequality. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420156.png" /> are incomparable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420157.png" /> and neither <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420158.png" /> nor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420159.png" />, and denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420160.png" /> the set of all linear extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420161.png" /> that satisfy the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420162.png" /> relations. The Fishburn–Shepp inequality says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420163.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420164.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420165.png" /> are mutually incomparable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420166.png" />, then
+
A premier correlation inequality in this setting is the [[Fishburn–Shepp inequality|Fishburn–Shepp inequality]] [[#References|[a6]]], [[#References|[a18]]], also known as the $  xyz $
 +
inequality. One says that $  x,y \in X $
 +
are incomparable if $  x \neq y $
 +
and neither $  x \prec y $
 +
nor $  y \prec x $,  
 +
and denotes by $  ( x _ {1} < _ {0} y _ {1} \dots x _ {m} < _ {0} y _ {m} ) $
 +
the set of all linear extensions of $  ( X, \prec ) $
 +
that satisfy the $  x _ {i} < _ {0} y _ {i} $
 +
relations. The Fishburn–Shepp inequality says that if $  x $,  
 +
$  y $
 +
and $  z $
 +
are mutually incomparable in $  ( X, \prec ) $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420167.png" /></td> </tr></table>
+
$$
 +
\mu ( x < _ {0} y ) \mu ( x < _ {0} z ) < \mu ( x < _ {0} y, x < _ {0} z ) ,
 +
$$
  
so events <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420168.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420169.png" /> are positively correlated. Rewritten as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420170.png" />, one sees that the probability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420171.png" /> in a randomly chosen linear extension increases when it is true also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420172.png" />. Examples in [[#References|[a10]]], [[#References|[a17]]], [[#References|[a18]]] show that other plausible positive or non-negative correlations need not be true.
+
so events $  A = ( x < _ {0} y ) $
 +
and  $  B = ( x < _ {0} z ) $
 +
are positively correlated. Rewritten as $  \mu ( A \cap B ) / \mu ( A ) > \mu ( B ) $,  
 +
one sees that the probability of $  x < _ {0} z $
 +
in a randomly chosen linear extension increases when it is true also that $  x < _ {0} y $.  
 +
Examples in [[#References|[a10]]], [[#References|[a17]]], [[#References|[a18]]] show that other plausible positive or non-negative correlations need not be true.
  
Inequalities involving two-part partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420173.png" /> are featured in [[#References|[a11]]], [[#References|[a17]]]. Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420174.png" /> is a non-trivial [[Partition|partition]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420175.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420176.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420177.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420178.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420179.png" />. If the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420180.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420181.png" /> to each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420182.png" /> is a linear order (cf. also [[Order (on a set)|Order (on a set)]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420183.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420184.png" /> are non-negatively correlated, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420185.png" />. The same is true if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420186.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420187.png" /> is a partial order on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420188.png" />.
+
Inequalities involving two-part partitions of $  X $
 +
are featured in [[#References|[a11]]], [[#References|[a17]]]. Suppose $  \{ X _ {1} , X _ {2} \} $
 +
is a non-trivial [[Partition|partition]] of $  X $.  
 +
Let $  A = ( a _ {1} < _ {0} b _ {1} \dots a _ {j} < _ {0} b _ {j} ) $
 +
and  $  B = ( c _ {1} < _ {0} d _ {1} \dots c _ {k} < _ {0} d _ {k} ) $
 +
for  $  a _ {i} , c _ {i} \in X _ {1} $
 +
and  $  b _ {i} , d _ {i} \in X _ {2} $.  
 +
If the restriction of $  \prec $
 +
in $  ( X, \prec ) $
 +
to each $  X _ {i} $
 +
is a linear order (cf. also [[Order (on a set)|Order (on a set)]]), then $  A $
 +
and $  B $
 +
are non-negatively correlated, i.e. $  \mu ( A \cap B ) \geq  \mu ( A ) \mu ( B ) $.  
 +
The same is true if $  \prec  = \prec _ {1} \cup \prec _ {2} $,  
 +
where $  \prec _ {i} $
 +
is a partial order on $  X _ {i} $.
  
Other inequalities which use two ordering relations on a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420189.png" /> that are associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420190.png" /> are in [[#References|[a3]]], [[#References|[a4]]], [[#References|[a7]]], [[#References|[a22]]], [[#References|[a23]]]. One of these, [[#References|[a3]]], shows that the plausible inequality
+
Other inequalities which use two ordering relations on a fixed $  Y \subseteq X $
 +
that are associated with $  \prec $
 +
are in [[#References|[a3]]], [[#References|[a4]]], [[#References|[a7]]], [[#References|[a22]]], [[#References|[a23]]]. One of these, [[#References|[a3]]], shows that the plausible inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420191.png" /></td> </tr></table>
+
$$
 +
\mu ( x < _ {0} y < _ {0} z < _ {0} w ) \leq  \mu ( x < _ {0} y < _ {0} z ) \mu ( z < _ {0} w ) ,
 +
$$
  
which is suggested by the non-strict rendering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420192.png" /> of the Fishburn–Shepp inequality, can be contradicted whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420193.png" />.
+
which is suggested by the non-strict rendering $  \mu ( x < _ {0} y < _ {0} z ) \leq  \mu ( x < _ {0} y ) \mu ( y < _ {0} z ) $
 +
of the Fishburn–Shepp inequality, can be contradicted whenever $  n \geq  5 $.
  
 
==An inequality from percolation theory.==
 
==An inequality from percolation theory.==
A final inequality comes from percolation theory [[#References|[a20]]], [[#References|[a21]]] and provides a nice contrast to the FKG inequality version <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420194.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420195.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420196.png" /> are up-sets in the family of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420197.png" />. For convenience, the subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420198.png" /> are written in characteristic vector form, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420199.png" />. The cylinder set determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420200.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420201.png" /> is defined as
+
A final inequality comes from percolation theory [[#References|[a20]]], [[#References|[a21]]] and provides a nice contrast to the FKG inequality version $  | A | \cdot | B | \leq  2  ^ {n} | {A \cap B } | $
 +
when $  A $
 +
and $  B $
 +
are up-sets in the family of subsets of $  \{ 1 \dots n \} $.  
 +
For convenience, the subsets of $  \{ 1 \dots n \} $
 +
are written in characteristic vector form, so that $  S = \{ 0, 1 \}  ^ {n} $.  
 +
The cylinder set determined by $  x \in S $
 +
and $  K \subseteq \{ 1 \dots n \} $
 +
is defined as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420202.png" /></td> </tr></table>
+
$$
 +
c ( x, K ) = \left \{ {y \in S } : {y _ {j} = x _ {j}  \textrm{ for  all  }  j \in K } \right \} ,
 +
$$
  
and the disjoint intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420203.png" /> is defined by
+
and the disjoint intersection of $  A, B \subseteq S $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420204.png" /></td> </tr></table>
+
$$
 +
A \square B = \left \{ {x \in S } : c ( x, K ) \subseteq A,\right .  
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420205.png" /></td> </tr></table>
+
$$
 +
\left .
 +
c ( x, \{ 1 \dots n \} \setminus  K ) \subseteq B  \textrm{ for  some  }  K \right \} .
 +
$$
  
 
The inequality, conjectured in [[#References|[a20]]], [[#References|[a21]]] and proved in [[#References|[a15]]], is
 
The inequality, conjectured in [[#References|[a20]]], [[#References|[a21]]] and proved in [[#References|[a15]]], is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420206.png" /></td> </tr></table>
+
$$
 +
2  ^ {n} \left | {A \square B } \right | \leq  \left | A \right | \cdot \left | B \right |  \textrm{ for  all  }  A, B \subseteq S .
 +
$$
  
Thus, whereas some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420207.png" /> are positively correlated by the usual definition based on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420208.png" />, all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420209.png" /> are  "non-positively correlated"  with respect to the disjoint intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420210.png" />.
+
Thus, whereas some $  A, B \subseteq S $
 +
are positively correlated by the usual definition based on $  A \cap B $,  
 +
all $  A, B \subseteq S $
 +
are  "non-positively correlated"  with respect to the disjoint intersection $  A \square B $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Ahlswede,  D.E. Daykin,  "An inequality for the weights of two families, their unions and intersections"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''43'''  (1978)  pp. 183–185</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Bollobás,  "Combinatorics" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.R. Brightwell,  "Universal correlations in finite posets"  ''Order'' , '''2'''  (1985)  pp. 129–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G.R. Brightwell,  "Some correlation inequalities in finite posets"  ''Order'' , '''2'''  (1986)  pp. 387–402</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D.E. Daykin,  "A lattice is distributive if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420211.png" />"  ''Nanta Math.'' , '''10'''  (1977)  pp. 58–60</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.C. Fishburn,  "A correlational inequality for linear extensions of a poset"  ''Order'' , '''1'''  (1984)  pp. 127–137</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P.C. Fishburn,  "Correlation in partially ordered sets"  ''Discrete Appl. Math.'' , '''39'''  (1992)  pp. 173–191</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  P.C. Fishburn,  P.G. Doyle,  L.A. Shepp,  "The match set of a random permutation has the FKG property"  ''Ann. of Probab.'' , '''16'''  (1988)  pp. 1194–1214</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.M. Fortuin,  P.N. Kasteleyn,  J. Ginibre,  "Correlation inequalities for some partially ordered sets"  ''Comm. Math. Phys.'' , '''22'''  (1971)  pp. 89–103</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  R.L. Graham,  "Applications of the FKG inequality and its relatives" , ''Proc. 12th Internat. Symp. Math. Programming'' , Springer  (1983)  pp. 115–131</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R.L Graham,  A.C. Yao,  F.F. Yao,  "Some monotonicity properties of partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''1'''  (1980)  pp. 251–258</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  R. Holley,  "Remarks on the FKG inequalities"  ''Comm. Math. Phys.'' , '''36'''  (1974)  pp. 227–231</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  D.J. Kleitman,  "Families of non-disjoint sets"  ''J. Combin. Th.'' , '''1'''  (1966)  pp. 153–155</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  J. Marica,  J. Schönheim,  "Differences of sets and a problem of Graham"  ''Canad. Math. Bull.'' , '''12'''  (1969)  pp. 635–637</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  D. Reimer,  ''in preparation''  (to appear)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  P.D. Seymour,  "On incomparable collections of sets"  ''Mathematika'' , '''20'''  (1973)  pp. 208–209</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  L.A. Shepp,  "The FKG property and some monotonicity properties of partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''1'''  (1980)  pp. 295–299</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  L.A. Shepp,  "The XYZ conjecture and the FKG inequality"  ''Ann. of Probab.'' , '''10'''  (1982)  pp. 824–827</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  R.F. Tate,  "Correlation methods"  W.H. Kruskal (ed.)  J.M. Tanur (ed.) , ''Internat. Encycl. Stat.'' , '''1''' , Free Press  (1978)  pp. 615–628</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  J. van der Berg,  U. Fiebig,  "On a combinatorial conjecture concerning disjoint occurrences of events"  ''Ann. of Probab.'' , '''15'''  (1987)  pp. 354–374</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  J. van der Berg,  H. Kesten,  "Inequalities with applications to percolation and reliability"  ''J. Appl. Probab.'' , '''22'''  (1985)  pp. 556–569</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  P.M. Winkler,  "Correlation among partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''4'''  (1983)  pp. 1–7</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  P M. Winkler,  "Correlation and order"  ''Contemp. Math.'' , '''57'''  (1986)  pp. 151–174</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Ahlswede,  D.E. Daykin,  "An inequality for the weights of two families, their unions and intersections"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''43'''  (1978)  pp. 183–185</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Bollobás,  "Combinatorics" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.R. Brightwell,  "Universal correlations in finite posets"  ''Order'' , '''2'''  (1985)  pp. 129–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G.R. Brightwell,  "Some correlation inequalities in finite posets"  ''Order'' , '''2'''  (1986)  pp. 387–402</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D.E. Daykin,  "A lattice is distributive if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420211.png" />"  ''Nanta Math.'' , '''10'''  (1977)  pp. 58–60</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.C. Fishburn,  "A correlational inequality for linear extensions of a poset"  ''Order'' , '''1'''  (1984)  pp. 127–137</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P.C. Fishburn,  "Correlation in partially ordered sets"  ''Discrete Appl. Math.'' , '''39'''  (1992)  pp. 173–191</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  P.C. Fishburn,  P.G. Doyle,  L.A. Shepp,  "The match set of a random permutation has the FKG property"  ''Ann. of Probab.'' , '''16'''  (1988)  pp. 1194–1214</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.M. Fortuin,  P.N. Kasteleyn,  J. Ginibre,  "Correlation inequalities for some partially ordered sets"  ''Comm. Math. Phys.'' , '''22'''  (1971)  pp. 89–103</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  R.L. Graham,  "Applications of the FKG inequality and its relatives" , ''Proc. 12th Internat. Symp. Math. Programming'' , Springer  (1983)  pp. 115–131</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R.L Graham,  A.C. Yao,  F.F. Yao,  "Some monotonicity properties of partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''1'''  (1980)  pp. 251–258</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  R. Holley,  "Remarks on the FKG inequalities"  ''Comm. Math. Phys.'' , '''36'''  (1974)  pp. 227–231</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  D.J. Kleitman,  "Families of non-disjoint sets"  ''J. Combin. Th.'' , '''1'''  (1966)  pp. 153–155</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  J. Marica,  J. Schönheim,  "Differences of sets and a problem of Graham"  ''Canad. Math. Bull.'' , '''12'''  (1969)  pp. 635–637</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  D. Reimer,  ''in preparation''  (to appear)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  P.D. Seymour,  "On incomparable collections of sets"  ''Mathematika'' , '''20'''  (1973)  pp. 208–209</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  L.A. Shepp,  "The FKG property and some monotonicity properties of partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''1'''  (1980)  pp. 295–299</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  L.A. Shepp,  "The XYZ conjecture and the FKG inequality"  ''Ann. of Probab.'' , '''10'''  (1982)  pp. 824–827</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  R.F. Tate,  "Correlation methods"  W.H. Kruskal (ed.)  J.M. Tanur (ed.) , ''Internat. Encycl. Stat.'' , '''1''' , Free Press  (1978)  pp. 615–628</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  J. van der Berg,  U. Fiebig,  "On a combinatorial conjecture concerning disjoint occurrences of events"  ''Ann. of Probab.'' , '''15'''  (1987)  pp. 354–374</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  J. van der Berg,  H. Kesten,  "Inequalities with applications to percolation and reliability"  ''J. Appl. Probab.'' , '''22'''  (1985)  pp. 556–569</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  P.M. Winkler,  "Correlation among partial orders"  ''SIAM J. Alg. Discrete Methods'' , '''4'''  (1983)  pp. 1–7</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  P M. Winkler,  "Correlation and order"  ''Contemp. Math.'' , '''57'''  (1986)  pp. 151–174</TD></TR></table>

Revision as of 17:31, 5 June 2020


Correlation between variables in multivariate statistics (cf. also Multi-dimensional statistical analysis) [a19] has motivated classes of inequalities on subsets of a base set $ S $ that are referred to as correlation inequalities. They are often stated deterministically but usually have probabilistic interpretations. For example, suppose $ S $ is the family of all subsets of a finite set $ \{ 1 \dots n \} $, and let $ A $ and $ B $ be order ideals or down-sets in $ ( S, \subset ) $: $ a \subset b \in A $ implies $ a \in A $, $ a \subset b \in B $ implies $ a \in B $, with $ A, B \subseteq S $. Then, [a13], [a16], $ 2 ^ {n} | {A \cap B } | \geq | A | \cdot | B | $. When $ \mu $ is the uniform probability measure (cf. also Probability measure) on $ 2 ^ {S} $, so that $ \mu ( a ) = \mu ( \{ a \} ) = 2 ^ {- n } $ for every $ a \in S $, and $ \mu ( A ) = | A | 2 ^ {- n } $, one has $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $. Hence, with respect to $ \mu $, $ A $ and $ B $ are correlated whenever both are down-sets.

As general definitions, one says with respect to a probability measure $ \mu $ on an algebra $ {\mathcal E} $ of subsets of $ S $ that $ A, B \in {\mathcal E} $ are positively correlated if $ \mu ( A \cap B ) > \mu ( A ) \mu ( B ) $ and non-negatively correlated if $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $. Inequality reversals define negative correlation and non-positive correlation, respectively. The instances of these inequalities and generalizations described below assume that $ S $ is a finite set partially ordered by $ \prec $ so that $ \prec $ is irreflexive (never $ a \prec a $) and transitive: $ a \prec b $ and $ b \prec c $ imply $ a \prec c $.

Inequalities for distributive lattices.

Let $ ( S, \prec ) $ be a distributive lattice with join $ a \lor b $ and meet $ a \wedge b $ defined by

$$ a \lor b = \min \left \{ {z \in S } : {a \cle z, b \cle z } \right \} , $$

$$ a \wedge b = \max \left \{ {z \in S } : {z \cle a, z \cle b } \right \} . $$

Distributivity says that $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ for all $ a,b,c \in S $. A mapping $ f : S \rightarrow \mathbf R $ is non-decreasing if $ a \prec b $ implies $ f ( a ) \leq f ( b ) $ for all $ a,b \in S $, and $ f ( A ) $ is defined as $ \sum _ {a \in A } f ( a ) $ for $ A \subseteq S $, with $ f ( \emptyset ) = 0 $. The join and meet $ \lor $ and $ \wedge $ can be extended to subsets $ A, B \subseteq S $ by

$$ A \lor B = \left \{ {a \lor b } : {a \in A, b \in B } \right \} , $$

$$ A \wedge B = \left \{ {a \wedge b } : {a \in A, b \in B } \right \} , $$

with the understanding that $ A \lor B = A \wedge B = \emptyset $ if $ A $ or $ B $ is empty.

The pre-eminent correlation inequality is the Ahlswede–Daykin inequality [a1], also called the four-functions inequality [a2]. It says that if $ {f _ {1} , f _ {2} , f _ {3} , f _ {4} } : S \rightarrow {[ 0, \infty ) } $ satisfy

$$ f _ {1} ( a ) f _ {2} ( b ) \leq f _ {3} ( a \lor b ) f _ {4} ( a \wedge b ) \textrm{ for all } a, b \in S, $$

then

$$ f _ {1} ( A ) f _ {2} ( B ) \leq f _ {3} ( A \lor B ) f _ {4} ( A \wedge B ) \textrm{ for all } A, B \subseteq S . $$

This is a very powerful result that allows efficient proofs of many other correlation inequalities [a2], [a7], [a10], [a23]. One unusual application [a8] concerns match sets of orders of a deck of $ 52 $ cards numbered $ 1 $ through $ 52 $. For each order, $ M = \{ k : {\textrm{ card } k \textrm{ is the } k \textrm{ th card at the top of the deck } } \} $. Let $ A = \{ M : {\textrm{ an even } k \in M } \} $ and $ B = \{ M : {\textrm{ an odd } k \in M } \} $. When $ \mu $ is the uniform distribution on the $ 52! $ orders, $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $. Hence, if the match set of a well-shuffled deck contains an odd number, this can only increase our confidence that it contains an even number.

The most important correlation inequality historically is the FKG inequality [a9] (also known as the Fortuin–Kasteleyn–Ginibre inequality), which says that if $ \eta : S \rightarrow {[ 0, \infty ) } $ is log supermodular, i.e.,

$$ \eta ( a ) \eta ( b ) \leq \eta ( a \lor b ) \eta ( a \wedge b ) \textrm{ for all } a,b \in S, $$

and if $ f : S \rightarrow \mathbf R $ and $ g : S \rightarrow \mathbf R $ are non-decreasing, then

$$ \left [ \sum _ { S } \eta ( a ) f ( a ) \right ] \left [ \sum _ { S } \eta ( a ) g ( a ) \right ] \leq $$

$$ \leq \left [ \sum _ { S } \eta ( a ) \right ] \left [ \sum _ { S } \eta ( a ) f ( a ) g ( a ) \right ] . $$

This can be written in terms of the mathematical expectation operation $ {\mathsf E} _ \eta $ as $ {\mathsf E} _ \eta ( f ) {\mathsf E} _ \eta ( g ) \leq {\mathsf E} _ \eta ( fg ) $, when $ S $ is a Boolean algebra and $ \eta $ is a log supermodular probability measure with $ \lor = \cup $ and $ \wedge = \cap $. Suitable definitions of $ f $ and $ g $ with $ \{ 0,1 \} $ co-domains show that $ A, B \subseteq S $ are non-negatively correlated when both are up-sets or order filters, given log supermodularity.

Another notable result is the Holley inequality [a12]. Suppose $ {\eta _ {1} } : S \rightarrow {[ 0, \infty ) } $ and $ {\eta _ {2} } : S \rightarrow {[ 0, \infty ) } $ satisfy $ \sum _ {S} \eta _ {1} ( a ) = \sum _ {S} \eta _ {2} ( a ) $ along with the following inequality that generalizes log supermodularity and is itself generalized by the four-function Ahlswede–Daykin hypothesis:

$$ \eta _ {1} ( a ) \eta _ {2} ( b ) \leq \eta _ {1} ( a \lor b ) \eta _ {2} ( a \wedge b ) \textrm{ for all } a,b \in S . $$

Then the Holley inequality says that for every non-decreasing $ f : S \rightarrow \mathbf R $,

$$ \sum _ { S } f ( a ) \eta _ {1} ( a ) \geq \sum _ { S } f ( a ) \eta _ {2} ( a ) . $$

Simple proofs of the FKG and Holley inequalities follow from the Ahlswede–Daykin inequality by suitable choices of $ f _ {1} $ through $ f _ {4} $. Also, when $ f _ {i} = \eta $ for all $ i $, log supermodularity on $ S $ implies log supermodularity on the subsets of $ S $; when $ f _ {i} \equiv 1 $ for all $ i $, one obtains $ | A | \cdot | B | \leq | {A \lor B } | \cdot | {A \wedge B } | $ for all $ A,B \subseteq S $, which is equivalent to distributivity [a5] for an ordered lattice $ ( S, \prec ) $.

Systems of subsets.

Several inequalities for $ ( S, \subset ) $ when $ S $ is the family of subsets of $ \{ 1 \dots n \} $ have already been given. Log supermodularity for a probability measure $ \mu $ on $ 2 ^ {S} $ is defined as $ \mu ( a ) \mu ( b ) \leq \mu ( a \cup b ) \mu ( a \cap b ) $ for all $ a,b \in S $, and when this holds, the FKG inequality says that $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $ for non-decreasing $ f : S \rightarrow \mathbf R $ and $ g : S \rightarrow \mathbf R $ and implies that $ \mu ( A ) \mu ( B ) \leq \mu ( A \lor B ) \mu ( A \wedge B ) $ for all $ A,B \subseteq S $. In addition, if $ A $ and $ B $ are down-sets or up-sets, then $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $. When $ \mu $ is uniform, in which case log supermodularity is automatic, $ 2 ^ {n} | {A \cap B } | \leq | A | \cdot | B | $ if $ A $ is an up-set and $ B $ is a down-set, so the two are non-positively correlated when the complementary orientations obtain.

Another inequality involves set differences [a14]. Let $ A - B = \{ {a \setminus b } : {a \in A, b \in B } \} $ for $ A, B \subseteq S $. Then $ | {A - B } | \cdot | {B - A } | \geq | A | \cdot | B | $, and, in particular, $ | {A - A } | \geq | A | $.

The match set of a permutation $ \sigma $ on $ \{ 1 \dots n \} $ is defined as $ M ( \sigma ) = \{ {i \in \{ 1 \dots n \} } : {\sigma ( i ) = i } \} $. Assuming that all $ n! $ permutations are equally likely, let $ \mu ( a ) $ for $ a \subseteq \{ 1 \dots n \} $ be the probability that $ M ( \sigma ) = a $. Note that $ \mu ( a ) = 0 $ when $ | a | = n - 1 $ and hence that $ \mu $ is not log supermodular. However, there still is an FKG-like inequality [a8], because $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $ whenever $ A,B \subseteq S $ are up-sets. This illustrates the non-necessity of log supermodularity in certain cases for a correlation inequality to hold.

Linear extensions.

Another class of correlation inequalities arises when $ S $ is the set of linear extensions of a finite partially ordered set $ ( X, \prec ) $ and all members of $ S $ are equally likely. $ ( X, < _ {0} ) $ is a linear extension of $ ( X, \prec ) $ if $ ( X, < _ {0} ) $ is a partially ordered set, $ \prec \subseteq < _ {0} $ and, for all distinct $ x,y \in X $, $ x < _ {0} y $ or $ y < _ {0} x $. Let $ N $ be the number of linear extensions of $ ( X, \prec ) $, so the probability law for $ S $ is $ \mu ( a ) = 1/N $. By additivity, $ \mu ( A ) = \sum _ {A} \mu ( a ) $ for each subset $ A $ of linear extensions.

A premier correlation inequality in this setting is the Fishburn–Shepp inequality [a6], [a18], also known as the $ xyz $ inequality. One says that $ x,y \in X $ are incomparable if $ x \neq y $ and neither $ x \prec y $ nor $ y \prec x $, and denotes by $ ( x _ {1} < _ {0} y _ {1} \dots x _ {m} < _ {0} y _ {m} ) $ the set of all linear extensions of $ ( X, \prec ) $ that satisfy the $ x _ {i} < _ {0} y _ {i} $ relations. The Fishburn–Shepp inequality says that if $ x $, $ y $ and $ z $ are mutually incomparable in $ ( X, \prec ) $, then

$$ \mu ( x < _ {0} y ) \mu ( x < _ {0} z ) < \mu ( x < _ {0} y, x < _ {0} z ) , $$

so events $ A = ( x < _ {0} y ) $ and $ B = ( x < _ {0} z ) $ are positively correlated. Rewritten as $ \mu ( A \cap B ) / \mu ( A ) > \mu ( B ) $, one sees that the probability of $ x < _ {0} z $ in a randomly chosen linear extension increases when it is true also that $ x < _ {0} y $. Examples in [a10], [a17], [a18] show that other plausible positive or non-negative correlations need not be true.

Inequalities involving two-part partitions of $ X $ are featured in [a11], [a17]. Suppose $ \{ X _ {1} , X _ {2} \} $ is a non-trivial partition of $ X $. Let $ A = ( a _ {1} < _ {0} b _ {1} \dots a _ {j} < _ {0} b _ {j} ) $ and $ B = ( c _ {1} < _ {0} d _ {1} \dots c _ {k} < _ {0} d _ {k} ) $ for $ a _ {i} , c _ {i} \in X _ {1} $ and $ b _ {i} , d _ {i} \in X _ {2} $. If the restriction of $ \prec $ in $ ( X, \prec ) $ to each $ X _ {i} $ is a linear order (cf. also Order (on a set)), then $ A $ and $ B $ are non-negatively correlated, i.e. $ \mu ( A \cap B ) \geq \mu ( A ) \mu ( B ) $. The same is true if $ \prec = \prec _ {1} \cup \prec _ {2} $, where $ \prec _ {i} $ is a partial order on $ X _ {i} $.

Other inequalities which use two ordering relations on a fixed $ Y \subseteq X $ that are associated with $ \prec $ are in [a3], [a4], [a7], [a22], [a23]. One of these, [a3], shows that the plausible inequality

$$ \mu ( x < _ {0} y < _ {0} z < _ {0} w ) \leq \mu ( x < _ {0} y < _ {0} z ) \mu ( z < _ {0} w ) , $$

which is suggested by the non-strict rendering $ \mu ( x < _ {0} y < _ {0} z ) \leq \mu ( x < _ {0} y ) \mu ( y < _ {0} z ) $ of the Fishburn–Shepp inequality, can be contradicted whenever $ n \geq 5 $.

An inequality from percolation theory.

A final inequality comes from percolation theory [a20], [a21] and provides a nice contrast to the FKG inequality version $ | A | \cdot | B | \leq 2 ^ {n} | {A \cap B } | $ when $ A $ and $ B $ are up-sets in the family of subsets of $ \{ 1 \dots n \} $. For convenience, the subsets of $ \{ 1 \dots n \} $ are written in characteristic vector form, so that $ S = \{ 0, 1 \} ^ {n} $. The cylinder set determined by $ x \in S $ and $ K \subseteq \{ 1 \dots n \} $ is defined as

$$ c ( x, K ) = \left \{ {y \in S } : {y _ {j} = x _ {j} \textrm{ for all } j \in K } \right \} , $$

and the disjoint intersection of $ A, B \subseteq S $ is defined by

$$ A \square B = \left \{ {x \in S } : c ( x, K ) \subseteq A,\right . $$

$$ \left . c ( x, \{ 1 \dots n \} \setminus K ) \subseteq B \textrm{ for some } K \right \} . $$

The inequality, conjectured in [a20], [a21] and proved in [a15], is

$$ 2 ^ {n} \left | {A \square B } \right | \leq \left | A \right | \cdot \left | B \right | \textrm{ for all } A, B \subseteq S . $$

Thus, whereas some $ A, B \subseteq S $ are positively correlated by the usual definition based on $ A \cap B $, all $ A, B \subseteq S $ are "non-positively correlated" with respect to the disjoint intersection $ A \square B $.

References

[a1] R. Ahlswede, D.E. Daykin, "An inequality for the weights of two families, their unions and intersections" Z. Wahrscheinlichkeitsth. verw. Gebiete , 43 (1978) pp. 183–185
[a2] B. Bollobás, "Combinatorics" , Cambridge Univ. Press (1986)
[a3] G.R. Brightwell, "Universal correlations in finite posets" Order , 2 (1985) pp. 129–144
[a4] G.R. Brightwell, "Some correlation inequalities in finite posets" Order , 2 (1986) pp. 387–402
[a5] D.E. Daykin, "A lattice is distributive if and only if " Nanta Math. , 10 (1977) pp. 58–60
[a6] P.C. Fishburn, "A correlational inequality for linear extensions of a poset" Order , 1 (1984) pp. 127–137
[a7] P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191
[a8] P.C. Fishburn, P.G. Doyle, L.A. Shepp, "The match set of a random permutation has the FKG property" Ann. of Probab. , 16 (1988) pp. 1194–1214
[a9] C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103
[a10] R.L. Graham, "Applications of the FKG inequality and its relatives" , Proc. 12th Internat. Symp. Math. Programming , Springer (1983) pp. 115–131
[a11] R.L Graham, A.C. Yao, F.F. Yao, "Some monotonicity properties of partial orders" SIAM J. Alg. Discrete Methods , 1 (1980) pp. 251–258
[a12] R. Holley, "Remarks on the FKG inequalities" Comm. Math. Phys. , 36 (1974) pp. 227–231
[a13] D.J. Kleitman, "Families of non-disjoint sets" J. Combin. Th. , 1 (1966) pp. 153–155
[a14] J. Marica, J. Schönheim, "Differences of sets and a problem of Graham" Canad. Math. Bull. , 12 (1969) pp. 635–637
[a15] D. Reimer, in preparation (to appear)
[a16] P.D. Seymour, "On incomparable collections of sets" Mathematika , 20 (1973) pp. 208–209
[a17] L.A. Shepp, "The FKG property and some monotonicity properties of partial orders" SIAM J. Alg. Discrete Methods , 1 (1980) pp. 295–299
[a18] L.A. Shepp, "The XYZ conjecture and the FKG inequality" Ann. of Probab. , 10 (1982) pp. 824–827
[a19] R.F. Tate, "Correlation methods" W.H. Kruskal (ed.) J.M. Tanur (ed.) , Internat. Encycl. Stat. , 1 , Free Press (1978) pp. 615–628
[a20] J. van der Berg, U. Fiebig, "On a combinatorial conjecture concerning disjoint occurrences of events" Ann. of Probab. , 15 (1987) pp. 354–374
[a21] J. van der Berg, H. Kesten, "Inequalities with applications to percolation and reliability" J. Appl. Probab. , 22 (1985) pp. 556–569
[a22] P.M. Winkler, "Correlation among partial orders" SIAM J. Alg. Discrete Methods , 4 (1983) pp. 1–7
[a23] P M. Winkler, "Correlation and order" Contemp. Math. , 57 (1986) pp. 151–174
How to Cite This Entry:
Correlation inequalities. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Correlation_inequalities&oldid=13617
This article was adapted from an original article by P.C. Fishburn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article