Namespaces
Variants
Actions

Difference between revisions of "Conway algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
(details)
 
Line 7: Line 7:
  
 
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|semi-auto}}{{TEX|done}}
An abstract algebra which yields an invariant of links in $\mathbf{R} ^ { 3 }$ (cf. also [[Link|Link]]).
+
An abstract algebra which yields an invariant of links in $\mathbf{R}^{3}$ (cf. also [[Link]]).
  
The concept is related to the entropic right quasi-group (cf. also [[Quasi-group|Quasi-group]]). A Conway algebra consists of a sequence of $0$-argument operations (constants) $a _ { 1 } , a _ { 2 } , \dots$ and two $2$-argument operations $|$ and $*$, which satisfy the following conditions:
+
The concept is related to the entropic right quasi-group (cf. also [[Quasi-group]]). A Conway algebra consists of a sequence of $0$-argument operations (constants) $a_{1}, a_{2} , \dots$ and two $2$-argument operations $|$ and $*$, which satisfy the following conditions:
  
 
Initial conditions:
 
Initial conditions:
Line 29: Line 29:
 
C6) $( a | b )  *  b  = a$;
 
C6) $( a | b )  *  b  = a$;
  
C7) $( a  *  b ) |  b  = a$. The main link invariant yielded by a Conway algebra is the [[Jones–Conway polynomial|Jones–Conway polynomial]], [[#References|[a2]]], [[#References|[a5]]], [[#References|[a4]]].
+
C7) $( a  *  b ) |  b  = a$. The main link invariant yielded by a Conway algebra is the [[Jones–Conway polynomial]], [[#References|[a2]]], [[#References|[a5]]], [[#References|[a4]]].
  
A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also [[Torus knot|Torus knot]]) is described below:
+
A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also [[Torus knot]]) is described below:
  
\begin{equation*} a _ { 1 } = 1 , a _ { 2 } = 2, \end{equation*}
+
\begin{equation*} a_{1} = 1 , a_{2} = 2, \end{equation*}
  
 
\begin{equation*} a_3 = 4 ,\; a _ { i  + 3} = a _ { i }. \end{equation*}
 
\begin{equation*} a_3 = 4 ,\; a _ { i  + 3} = a _ { i }. \end{equation*}
Line 54: Line 54:
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top">  J.H. Conway,   "An enumeration of knots and links"  J. Leech (ed.) , ''Computational Problems in Abstract Algebra'' , Pergamon  (1969)  pp. 329–358</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J.H. Przytycki,   P. Traczyk,  "Invariants of links of Conway type"  ''Kobe J. Math.'' , '''4'''  (1987)  pp. 115–139</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  J.H. Przytycki,   P. Traczyk,  "Conway algebras and skein equivalence of links"  ''Proc. Amer. Math. Soc.'' , '''100''' :  4  (1987)  pp. 744–748</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A.S. Sikora,   "On Conway algebras and the Homflypt polynomial"  ''J. Knot Th. Ramifications'' , '''6''' :  6  (1997)  pp. 879–893</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  J.D. Smith,   "Skein polynomials and entropic right quasigroups Universal algebra, quasigroups and related systems (Jadwisin 1989)"  ''Demonstratio Math.'' , '''24''' :  1–2  (1991)  pp. 241–246</td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  J.H. Conway, "An enumeration of knots and links"  J. Leech (ed.) , ''Computational Problems in Abstract Algebra'' , Pergamon  (1969)  pp. 329–358</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  J.H. Przytycki, P. Traczyk,  "Invariants of links of Conway type"  ''Kobe J. Math.'' , '''4'''  (1987)  pp. 115–139</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  J.H. Przytycki, P. Traczyk,  "Conway algebras and skein equivalence of links"  ''Proc. Amer. Math. Soc.'' , '''100''' :  4  (1987)  pp. 744–748</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  A.S. Sikora, "On Conway algebras and the Homflypt polynomial"  ''J. Knot Th. Ramifications'' , '''6''' :  6  (1997)  pp. 879–893</td></tr>
 +
<tr><td valign="top">[a5]</td> <td valign="top">  J.D. Smith, "Skein polynomials and entropic right quasigroups Universal algebra, quasigroups and related systems (Jadwisin 1989)"  ''Demonstratio Math.'' , '''24''' :  1–2  (1991)  pp. 241–246</td></tr>
 +
</table>

Latest revision as of 07:05, 24 March 2024

An abstract algebra which yields an invariant of links in $\mathbf{R}^{3}$ (cf. also Link).

The concept is related to the entropic right quasi-group (cf. also Quasi-group). A Conway algebra consists of a sequence of $0$-argument operations (constants) $a_{1}, a_{2} , \dots$ and two $2$-argument operations $|$ and $*$, which satisfy the following conditions:

Initial conditions:

C1) $a _ { n } | a _ {n + 1} = a _ { n }$;

C2) $a _ { n } * a _ { n + 1} = a _ { n }$.

Transposition properties:

C3) $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$;

C4) $( a | b ) * ( c | d ) = ( a * c ) | ( b * d )$;

C5) $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$.

Inverse operation properties:

C6) $( a | b ) * b = a$;

C7) $( a * b ) | b = a$. The main link invariant yielded by a Conway algebra is the Jones–Conway polynomial, [a2], [a5], [a4].

A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also Torus knot) is described below:

\begin{equation*} a_{1} = 1 , a_{2} = 2, \end{equation*}

\begin{equation*} a_3 = 4 ,\; a _ { i + 3} = a _ { i }. \end{equation*}

The operations $|$ and $*$ are given by the following tables:

$|$ 1 2 3 4
1 2 1 4 3
2 3 4 1 2
3 1 2 3 4
4 4 3 2 1

 

$*$ 1 2 3 4
1 3 1 2 4
2 1 3 4 2
3 2 4 3 1
4 4 2 1 3

If one allows partial Conway algebras, one also gets the Murasugi signature and Tristram–Levine signature of links [a3]. The skein calculus (cf. also Skein module), developed by J.H. Conway, leads to the universal partial Conway algebra.

Invariants of links, $w _ { L }$, yielded by (partial) Conway algebras have the properties that for the Conway skein triple $L _ { + }$, $L_{-}$ and $L_0$:

\begin{equation*} w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } }, \end{equation*}

\begin{equation*} w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } } \end{equation*}

References

[a1] J.H. Conway, "An enumeration of knots and links" J. Leech (ed.) , Computational Problems in Abstract Algebra , Pergamon (1969) pp. 329–358
[a2] J.H. Przytycki, P. Traczyk, "Invariants of links of Conway type" Kobe J. Math. , 4 (1987) pp. 115–139
[a3] J.H. Przytycki, P. Traczyk, "Conway algebras and skein equivalence of links" Proc. Amer. Math. Soc. , 100 : 4 (1987) pp. 744–748
[a4] A.S. Sikora, "On Conway algebras and the Homflypt polynomial" J. Knot Th. Ramifications , 6 : 6 (1997) pp. 879–893
[a5] J.D. Smith, "Skein polynomials and entropic right quasigroups Universal algebra, quasigroups and related systems (Jadwisin 1989)" Demonstratio Math. , 24 : 1–2 (1991) pp. 241–246
How to Cite This Entry:
Conway algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conway_algebra&oldid=50906
This article was adapted from an original article by Jozef Przytycki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article