Namespaces
Variants
Actions

Difference between revisions of "Complex space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
c0241601.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/C024/C.0204160 Complex space,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''complex-analytic space''
 
''complex-analytic space''
  
An analytic space over the field of complex numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241601.png" />. The simplest and most widely used complex space is the complex number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241602.png" />. Its points, or elements, are all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241603.png" />-tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241604.png" /> of complex numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241606.png" />. It is a vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241607.png" /> with the operations of addition
+
An analytic space over the field of complex numbers $  \mathbf C $.  
 +
The simplest and most widely used complex space is the complex number space $  \mathbf C  ^ {n} $.  
 +
Its points, or elements, are all possible $  n $-
 +
tuples $  ( z _ {1} \dots z _ {n} ) $
 +
of complex numbers $  z _  \nu  = x _  \nu  + iy _  \nu  $,  
 +
$  \nu = 1 \dots n $.  
 +
It is a vector space over $  \mathbf C $
 +
with the operations of addition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241608.png" /></td> </tr></table>
+
$$
 +
z + z  ^  \prime  = \
 +
( z _ {1} + z _ {1}  ^  \prime  \dots z _ {n} + z _ {n}  ^  \prime  )
 +
$$
  
and multiplication by a scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c0241609.png" />,
+
and multiplication by a scalar $  \lambda \in \mathbf C $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416010.png" /></td> </tr></table>
+
$$
 +
\lambda z  = \
 +
( \lambda z _ {1} \dots \lambda z _ {n} ),
 +
$$
  
 
as well as a metric space with the Euclidean metric
 
as well as a metric space with the Euclidean metric
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416011.png" /></td> </tr></table>
+
$$
 +
\rho ( z, z  ^  \prime  )  = \
 +
| z - z  ^  \prime  |  = \
 +
\sqrt {\sum _ {\nu = 1 } ^ { n }
 +
| z _  \nu  - z _  \nu  ^  \prime  |  ^ {2} } =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416012.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sqrt {\sum _ {\nu = 1 } ^ { n }  ( x _  \nu  - x _  \nu  ^  \prime  )  ^ {2} + ( y _  \nu  - y _  \nu  ^  \prime  )  ^ {2} } .
 +
$$
  
In other words, the complex number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416013.png" /> is obtained as the result of complexifying the real number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416014.png" />. The complex number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416015.png" /> is also the topological product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416016.png" /> complex planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416018.png" />.
+
In other words, the complex number space $  \mathbf C  ^ {n} $
 +
is obtained as the result of complexifying the real number space $  \mathbf R  ^ {2n} $.  
 +
The complex number space $  \mathbf C  ^ {n} $
 +
is also the topological product of $  n $
 +
complex planes $  \mathbf C  ^ {1} = \mathbf C $,  
 +
$  \mathbf C  ^ {n} = \mathbf C \times \dots \times \mathbf C $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.V. Shabat,   "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki,   "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian) {{MR|}} {{ZBL|0799.32001}} {{ZBL|0732.32001}} {{ZBL|0732.30001}} {{ZBL|0578.32001}} {{ZBL|0574.30001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French) {{MR|0205211}} {{MR|0205210}} {{ZBL|0301.54002}} {{ZBL|0301.54001}} {{ZBL|0145.19302}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
A more general notion of complex space is contained in [[#References|[a1]]]. Roughly it is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416019.png" /> be a [[Hausdorff space|Hausdorff space]] equipped with a[[Sheaf|sheaf]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416020.png" /> of local <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416021.png" />-algebras (a so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416023.png" />-algebraized space). Two such spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416025.png" /> are called isomorphic if there is a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416027.png" /> and a sheaf isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416028.png" /> (cf. [[#References|[a1]]]). Now, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416029.png" />-algebraized space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416030.png" /> is called a complex manifold if it is locally isomorphic to a standard space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416032.png" /> a domain, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416033.png" /> its sheaf of germs of holomorphic functions, i.e. if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416034.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416037.png" /> and a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416038.png" />, for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416039.png" />, so that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416040.png" />-algebraized spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416042.png" /> are isomorphic. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416043.png" /> be a domain and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416044.png" /> a coherent ideal. The support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416045.png" /> of the (coherent) quotient sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416046.png" /> is a closed set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416047.png" />, and the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png" /> is a (coherent) sheaf of local <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416049.png" />-algebras. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416050.png" />-algebraized space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416051.png" /> is called a (closed) complex subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416053.png" /> (it is naturally imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416054.png" /> via the quotient sheaf mapping). A complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416055.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416056.png" />-algebraized space that is locally isomorphic to a complex subspace, i.e. every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416057.png" /> has a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416058.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416059.png" /> is isomorphic to a complex subspace of a domain in some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416060.png" />. (See also [[Sheaf theory|Sheaf theory]]; [[Coherent sheaf|Coherent sheaf]].) More on complex spaces, in particular their use in function theory of several variables and algebraic geometry, can be found in [[#References|[a1]]]. See also [[Stein space|Stein space]]; [[Analytic space|Analytic space]].
+
A more general notion of complex space is contained in [[#References|[a1]]]. Roughly it is as follows. Let $  X $
 +
be a [[Hausdorff space|Hausdorff space]] equipped with a[[Sheaf|sheaf]] $  {\mathcal O} _ {X} $
 +
of local $  \mathbf C $-
 +
algebras (a so-called $  \mathbf C $-
 +
algebraized space). Two such spaces $  ( X, {\mathcal O} _ {X} ) $
 +
and $  ( Y, {\mathcal O} _ {Y} ) $
 +
are called isomorphic if there is a homeomorphism $  f: X \rightarrow Y $
 +
and a sheaf isomorphism $  \widetilde{f}  : {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $(
 +
cf. [[#References|[a1]]]). Now, a $  \mathbf C $-
 +
algebraized space $  ( X, {\mathcal O} _ {X} ) $
 +
is called a complex manifold if it is locally isomorphic to a standard space $  ( D, {\mathcal O} _ {D} ) $,  
 +
$  D \subset  \mathbf C  ^ {m} $
 +
a domain, $  {\mathcal O} _ {D} $
 +
its sheaf of germs of holomorphic functions, i.e. if for every $  x \in X $
 +
there is a neighbourhood $  U $
 +
of $  x $
 +
in $  X $
 +
and a domain $  D \subset  \mathbf C  ^ {m} $,  
 +
for some $  m $,  
 +
so that the $  \mathbf C $-
 +
algebraized spaces $  ( U, {\mathcal O} _ {U} ) $
 +
and $  ( D, {\mathcal O} _ {D} ) $
 +
are isomorphic. Let $  D \subset  \mathbf C  ^ {m} $
 +
be a domain and $  J \subset  {\mathcal O} _ {D} $
 +
a coherent ideal. The support $  A $
 +
of the (coherent) quotient sheaf $  {\mathcal O} _ {D} /J $
 +
is a closed set in $  D $,  
 +
and the sheaf $  {\mathcal O} _ {A} = {\mathcal O} _ {D} /J \mid  _ {A} $
 +
is a (coherent) sheaf of local $  \mathbf C $-
 +
algebras. The $  \mathbf C $-
 +
algebraized space $  ( A, {\mathcal O} _ {A} ) $
 +
is called a (closed) complex subspace of $  ( D, {\mathcal O} _ {D} ) $(
 +
it is naturally imbedded in $  ( D, {\mathcal O} _ {D} ) $
 +
via the quotient sheaf mapping). A complex space $  ( X, {\mathcal O} _ {X} ) $
 +
is a $  \mathbf C $-
 +
algebraized space that is locally isomorphic to a complex subspace, i.e. every point $  x \in X $
 +
has a neighbourhood $  U $
 +
so that $  ( U, {\mathcal O} _ {U} ) $
 +
is isomorphic to a complex subspace of a domain in some $  \mathbf C  ^ {m} $.  
 +
(See also [[Sheaf theory|Sheaf theory]]; [[Coherent sheaf|Coherent sheaf]].) More on complex spaces, in particular their use in function theory of several variables and algebraic geometry, can be found in [[#References|[a1]]]. See also [[Stein space|Stein space]]; [[Analytic space|Analytic space]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert,   R. Remmert,   "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) {{MR|0580152}} {{ZBL|0433.32007}} </TD></TR></table>

Latest revision as of 17:46, 4 June 2020


complex-analytic space

An analytic space over the field of complex numbers $ \mathbf C $. The simplest and most widely used complex space is the complex number space $ \mathbf C ^ {n} $. Its points, or elements, are all possible $ n $- tuples $ ( z _ {1} \dots z _ {n} ) $ of complex numbers $ z _ \nu = x _ \nu + iy _ \nu $, $ \nu = 1 \dots n $. It is a vector space over $ \mathbf C $ with the operations of addition

$$ z + z ^ \prime = \ ( z _ {1} + z _ {1} ^ \prime \dots z _ {n} + z _ {n} ^ \prime ) $$

and multiplication by a scalar $ \lambda \in \mathbf C $,

$$ \lambda z = \ ( \lambda z _ {1} \dots \lambda z _ {n} ), $$

as well as a metric space with the Euclidean metric

$$ \rho ( z, z ^ \prime ) = \ | z - z ^ \prime | = \ \sqrt {\sum _ {\nu = 1 } ^ { n } | z _ \nu - z _ \nu ^ \prime | ^ {2} } = $$

$$ = \ \sqrt {\sum _ {\nu = 1 } ^ { n } ( x _ \nu - x _ \nu ^ \prime ) ^ {2} + ( y _ \nu - y _ \nu ^ \prime ) ^ {2} } . $$

In other words, the complex number space $ \mathbf C ^ {n} $ is obtained as the result of complexifying the real number space $ \mathbf R ^ {2n} $. The complex number space $ \mathbf C ^ {n} $ is also the topological product of $ n $ complex planes $ \mathbf C ^ {1} = \mathbf C $, $ \mathbf C ^ {n} = \mathbf C \times \dots \times \mathbf C $.

References

[1] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian) Zbl 0799.32001 Zbl 0732.32001 Zbl 0732.30001 Zbl 0578.32001 Zbl 0574.30001
[2] N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French) MR0205211 MR0205210 Zbl 0301.54002 Zbl 0301.54001 Zbl 0145.19302

Comments

A more general notion of complex space is contained in [a1]. Roughly it is as follows. Let $ X $ be a Hausdorff space equipped with asheaf $ {\mathcal O} _ {X} $ of local $ \mathbf C $- algebras (a so-called $ \mathbf C $- algebraized space). Two such spaces $ ( X, {\mathcal O} _ {X} ) $ and $ ( Y, {\mathcal O} _ {Y} ) $ are called isomorphic if there is a homeomorphism $ f: X \rightarrow Y $ and a sheaf isomorphism $ \widetilde{f} : {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $( cf. [a1]). Now, a $ \mathbf C $- algebraized space $ ( X, {\mathcal O} _ {X} ) $ is called a complex manifold if it is locally isomorphic to a standard space $ ( D, {\mathcal O} _ {D} ) $, $ D \subset \mathbf C ^ {m} $ a domain, $ {\mathcal O} _ {D} $ its sheaf of germs of holomorphic functions, i.e. if for every $ x \in X $ there is a neighbourhood $ U $ of $ x $ in $ X $ and a domain $ D \subset \mathbf C ^ {m} $, for some $ m $, so that the $ \mathbf C $- algebraized spaces $ ( U, {\mathcal O} _ {U} ) $ and $ ( D, {\mathcal O} _ {D} ) $ are isomorphic. Let $ D \subset \mathbf C ^ {m} $ be a domain and $ J \subset {\mathcal O} _ {D} $ a coherent ideal. The support $ A $ of the (coherent) quotient sheaf $ {\mathcal O} _ {D} /J $ is a closed set in $ D $, and the sheaf $ {\mathcal O} _ {A} = {\mathcal O} _ {D} /J \mid _ {A} $ is a (coherent) sheaf of local $ \mathbf C $- algebras. The $ \mathbf C $- algebraized space $ ( A, {\mathcal O} _ {A} ) $ is called a (closed) complex subspace of $ ( D, {\mathcal O} _ {D} ) $( it is naturally imbedded in $ ( D, {\mathcal O} _ {D} ) $ via the quotient sheaf mapping). A complex space $ ( X, {\mathcal O} _ {X} ) $ is a $ \mathbf C $- algebraized space that is locally isomorphic to a complex subspace, i.e. every point $ x \in X $ has a neighbourhood $ U $ so that $ ( U, {\mathcal O} _ {U} ) $ is isomorphic to a complex subspace of a domain in some $ \mathbf C ^ {m} $. (See also Sheaf theory; Coherent sheaf.) More on complex spaces, in particular their use in function theory of several variables and algebraic geometry, can be found in [a1]. See also Stein space; Analytic space.

References

[a1] H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) MR0580152 Zbl 0433.32007
How to Cite This Entry:
Complex space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complex_space&oldid=11574
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article