Namespaces
Variants
Actions

Catalan constant

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Named after its inventor, E.Ch. Catalan (1814–1894), the Catalan constant $G$ (which is denoted also by $\lambda$) is defined by

\begin{equation} \label{a1} G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \approx0.915965594177219015 \ldots. \end{equation}

If, in terms of the Digamma (or Psi) function $\psi ( z )$, defined by

\begin{equation} \label{a2} \psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) } \end{equation}

or

\begin{equation*} \operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t, \end{equation*}

one puts

\begin{equation} \label{a3} \beta ( z ) : = \frac { 1 } { 2 } \left[ \psi \left( \frac { 1 } { 2 } z + \frac { 1 } { 2 } \right) - \psi \left( \frac { 1 } { 2 } z \right) \right] = \end{equation}

\begin{equation*} = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k }, \end{equation*}

where

\begin{equation*} z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}, \end{equation*}

then

\begin{equation} \label{a4} G = - \frac { 1 } { 4 } \beta ^ { \prime } \left( \frac { 1 } { 2 } \right) \end{equation}

which provides a relationship between the Catalan constant $G$ and the Digamma function $\psi ( z )$.

The Catalan constant $G$ is related also to other functions, such as the Clausen function $\operatorname{Cl}_{2} (z)$, defined by

\begin{equation} \label{a5} \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t = \end{equation}

\begin{equation*} = \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } }, \end{equation*}

and the Hurwitz zeta function $\zeta ( s , a )$, which is defined, when $\operatorname { Re } s > 1$, by

\begin{equation} \label{a6} \zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }, \end{equation}

\begin{equation*} \operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }. \end{equation*}

Thus,

\begin{equation} \label{a7} G = \operatorname{Cl} _ { 2 } ( \frac { 1 } { 2 } \pi ) = - \operatorname{Cl} _ { 2 } \left( \frac { 3 } { 2 } \pi \right) = \end{equation}

\begin{equation*} = \frac { 1 } { 16 } \left[ \zeta \left( 2 , \frac { 1 } { 4 } \right) - \zeta \left( 2 , \frac { 3 } { 4 } \right) \right]. \end{equation*}

Since

\begin{equation} \label{a8} \psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ), \end{equation}

\begin{equation*} n \in \mathbf{N} : = \{ 1,2 , \ldots \} , z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 } ^ { - }, \end{equation*}

the last expression in \eqref{a7} would follow also from \eqref{a4} in light of the definition in \eqref{a3}.

A fairly large number of integrals and series can be evaluated in terms of the Catalan constant $G$. For example,

\begin{equation} \label{a9} \int _ { 0 } ^ { 1 } \frac { t\operatorname { log } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t = \end{equation}

\begin{equation*} = \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 }, \end{equation*}

\begin{equation} \label{a10} \sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } = \end{equation}

\begin{equation*} = 4 \operatorname { log } 2 + 2 - \frac { 4 } { \pi } ( 2 G + 1 ), \end{equation*}

and

\begin{equation} \label{a11} \sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }, \end{equation}

where $\zeta ( s ) = \zeta ( s , 1 )$ denotes the familiar Riemann zeta-function.

References

  • [Fi] Steven R. Finch, "Mathematical constants", Encyclopedia of mathematics and its applications 94, Cambridge University Press (2003) ISBN 0-521-81805-2 Zbl 1054.00001
How to Cite This Entry:
Catalan constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catalan_constant&oldid=54344
This article was adapted from an original article by Hari M. Srivastava (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article