Namespaces
Variants
Actions

Difference between revisions of "Average"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
''with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142103.png" />, of a set of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142104.png" />''
+
{{TEX|done}}
 +
''with weight $q=(q_1,\dots,q_n)$, $q_i>0$, $\sum q_i=1$, of a set of real numbers $a=(a_1,\dots,a_n)$''
  
 
A variable
 
A variable
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142105.png" /></td> </tr></table>
+
$$\mathfrak M_\phi(a,q)=\phi^{-1}\left(\sum_iq_i\phi(a_i)\right),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142106.png" /> is a continuous strictly-monotone function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142107.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142108.png" />, one obtains
+
where $\phi(x)$ is a continuous strictly-monotone function on $\mathbf R$. When $\phi(x)=x^r$, one obtains
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a0142109.png" /></td> </tr></table>
+
$$\mathfrak M_r(a,q)=\left(\sum_iq_ia_i^r\right)^{1/r}$$
  
and, in particular, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421012.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421013.png" /> will be the arithmetic average of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421014.png" />, while when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421015.png" />, it will be the harmonic average. The concepts of the geometric average <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421016.png" /> and the weighted geometric average
+
and, in particular, when $r=1$, $q_i=1/n$, $i=1,\dots,n,$ $\mathfrak M_r(a,1/n)=\mathfrak A(a)$ will be the arithmetic average of the numbers $a_1,\dots,a_n$, while when $r=-1$, it will be the harmonic average. The concepts of the geometric average $\mathfrak G(a)=(\prod_ia_i)^{1/n}$ and the weighted geometric average
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421017.png" /></td> </tr></table>
+
$$\mathfrak G(a,p)=\left(\prod_ia_i^{p_i}\right)^{1/\sum_ip_i}$$
  
 
are introduced separately.
 
are introduced separately.
  
One of the basic results of the theory of averages is the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421018.png" />, except when all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421019.png" /> are equal to each other. Other results are:
+
One of the basic results of the theory of averages is the inequality $\mathfrak G(a)<\mathfrak A(a)$, except when all $a_i$ are equal to each other. Other results are:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421020.png" />;
+
1) $\mathfrak M_\phi(ka,p)=k\mathfrak M_\phi(a,p),k>0$;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421021.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421024.png" />;
+
2) $\mathfrak M_\psi(a,p)=\mathfrak M_\phi(a,p)$ if and only if $\psi=\alpha\phi+\beta$, $\beta\in\mathbf R$, $\alpha\neq0$;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421025.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421026.png" /> is a convex function; in particular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421027.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421028.png" />.
+
3) $\mathfrak M_\psi(a,p)\leq\mathfrak M_\phi(a,p)$ if and only if $\phi\circ\psi^{-1}$ is a convex function; in particular $\mathfrak M_r(a,p)\leq\mathfrak M_s(a,p)$ if $r<s$.
  
 
The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example:
 
The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421029.png" /></td> </tr></table>
+
$$\mathfrak M_\phi(f,p)=\frac{\phi^{-1}\left(\int\limits_a^bp(x)\phi(f(x))dx\right)}{\int\limits_a^bp(x)dx},$$
  
given the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421030.png" /> almost everywhere on the corresponding interval and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421031.png" />. Thus,
+
given the condition that $f(x)\geq0$ almost everywhere on the corresponding interval and that $p(x)>0$. Thus,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a014/a014210/a01421032.png" /></td> </tr></table>
+
$$\int\limits_a^bf(x)p(x)dx\leq\mathfrak M_\phi(f,p)\int\limits_a^bp(x)dx.$$
  
 
====References====
 
====References====
Line 37: Line 38:
  
 
====Comments====
 
====Comments====
Instead of  "average"  the term  "meanmean"  is also quite often used: arithmetic mean, geometric mean, etc.
+
Instead of  "average"  the term  "mean"  is also quite often used: arithmetic mean, geometric mean, etc.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.S. Mitrinović,  "Analytic inequalities" , Springer  (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.S. Mitrinović,  "Elementary inequalities" , Noordhoff  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.S. Mitrinović,  "Analytic inequalities" , Springer  (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.S. Mitrinović,  "Elementary inequalities" , Noordhoff  (1964)</TD></TR></table>

Revision as of 17:19, 23 September 2014

with weight $q=(q_1,\dots,q_n)$, $q_i>0$, $\sum q_i=1$, of a set of real numbers $a=(a_1,\dots,a_n)$

A variable

$$\mathfrak M_\phi(a,q)=\phi^{-1}\left(\sum_iq_i\phi(a_i)\right),$$

where $\phi(x)$ is a continuous strictly-monotone function on $\mathbf R$. When $\phi(x)=x^r$, one obtains

$$\mathfrak M_r(a,q)=\left(\sum_iq_ia_i^r\right)^{1/r}$$

and, in particular, when $r=1$, $q_i=1/n$, $i=1,\dots,n,$ $\mathfrak M_r(a,1/n)=\mathfrak A(a)$ will be the arithmetic average of the numbers $a_1,\dots,a_n$, while when $r=-1$, it will be the harmonic average. The concepts of the geometric average $\mathfrak G(a)=(\prod_ia_i)^{1/n}$ and the weighted geometric average

$$\mathfrak G(a,p)=\left(\prod_ia_i^{p_i}\right)^{1/\sum_ip_i}$$

are introduced separately.

One of the basic results of the theory of averages is the inequality $\mathfrak G(a)<\mathfrak A(a)$, except when all $a_i$ are equal to each other. Other results are:

1) $\mathfrak M_\phi(ka,p)=k\mathfrak M_\phi(a,p),k>0$;

2) $\mathfrak M_\psi(a,p)=\mathfrak M_\phi(a,p)$ if and only if $\psi=\alpha\phi+\beta$, $\beta\in\mathbf R$, $\alpha\neq0$;

3) $\mathfrak M_\psi(a,p)\leq\mathfrak M_\phi(a,p)$ if and only if $\phi\circ\psi^{-1}$ is a convex function; in particular $\mathfrak M_r(a,p)\leq\mathfrak M_s(a,p)$ if $r<s$.

The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example:

$$\mathfrak M_\phi(f,p)=\frac{\phi^{-1}\left(\int\limits_a^bp(x)\phi(f(x))dx\right)}{\int\limits_a^bp(x)dx},$$

given the condition that $f(x)\geq0$ almost everywhere on the corresponding interval and that $p(x)>0$. Thus,

$$\int\limits_a^bf(x)p(x)dx\leq\mathfrak M_\phi(f,p)\int\limits_a^bp(x)dx.$$

References

[1] G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)


Comments

Instead of "average" the term "mean" is also quite often used: arithmetic mean, geometric mean, etc.

References

[a1] D.S. Mitrinović, "Analytic inequalities" , Springer (1970)
[a2] D.S. Mitrinović, "Elementary inequalities" , Noordhoff (1964)
How to Cite This Entry:
Average. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Average&oldid=12458
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article