Namespaces
Variants
Actions

Difference between revisions of "Quasi-isometry"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100201.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100202.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100203.png" /> are metric spaces (cf. [[Metric space|Metric space]]), for which there exist two constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100204.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100205.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100206.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100207.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100208.png" />:
+
<!--
 +
q1100201.png
 +
$#A+1 = 20 n = 1
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/Q110/Q.1100020 Quasi\AAhisometry
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q1100209.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
This property expresses the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002010.png" /> is "Lipschitz in the large" (cf. also [[Lipschitz constant|Lipschitz constant]]). Such a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002011.png" /> is also called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002013.png" />-quasi-isometry.
+
A mapping  $  f : X \rightarrow Y $,
 +
where  $  ( X,d _ {X} ) $
 +
and $ ( Y,d _ {Y} ) $
 +
are metric spaces (cf. [[Metric space|Metric space]]), for which there exist two constants  $  \lambda > 0 $
 +
and  $  k \geq  0 $
 +
such that for all  $  x $
 +
and  $  x  ^  \prime  $
 +
in  $  X $:
  
Note that this definition, which is commonly used now (see [[#References|[a1]]], §7.2.G), does not imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002014.png" /> is continuous. In [[#References|[a4]]], §5.9, W. Thurston considers mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002015.png" /> satisfying the property above but with right-hand side replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002016.png" />. Such a mapping is continuous (cf. [[Continuous mapping|Continuous mapping]]) and Thurston calls it a pseudo-isometry. Some authors (see, e.g., [[#References|[a3]]]) use the word quasi-isometry to denote a mapping having the property above, with the further condition that the image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002017.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002018.png" />-dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002019.png" />, for some real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002020.png" />.
+
$$
 +
\lambda ^ {- 1 }  d _ {X} ( x,x  ^  \prime  ) - k \leq  d _ {Y} ( f ( x ) ,f ( x  ^  \prime  ) ) \leq  \lambda  d _ {X} ( x,x  ^  \prime  ) + k.
 +
$$
  
The importance of quasi-isometries has been fully realized in the proof of Mostow's rigidity theorem [[#References|[a2]]]. Thurston's lectures [[#References|[a4]]] contain an excellent exposition of this theorem for manifolds of constant curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002021.png" />.
+
This property expresses the fact that  $  f $
 +
is  "Lipschitz in the large"  (cf. also [[Lipschitz constant|Lipschitz constant]]). Such a mapping  $  f $
 +
is also called a  $  ( \lambda,k ) $-
 +
quasi-isometry.
 +
 
 +
Note that this definition, which is commonly used now (see [[#References|[a1]]], §7.2.G), does not imply that  $  f $
 +
is continuous. In [[#References|[a4]]], §5.9, W. Thurston considers mappings  $  f $
 +
satisfying the property above but with right-hand side replaced by  $  \lambda  d _ {X} ( x,x  ^  \prime  ) $.
 +
Such a mapping is continuous (cf. [[Continuous mapping|Continuous mapping]]) and Thurston calls it a pseudo-isometry. Some authors (see, e.g., [[#References|[a3]]]) use the word quasi-isometry to denote a mapping having the property above, with the further condition that the image  $  f ( X ) $
 +
is  $  \delta $-
 +
dense in  $  Y $,
 +
for some real number  $  \delta $.
 +
 
 +
The importance of quasi-isometries has been fully realized in the proof of Mostow's rigidity theorem [[#References|[a2]]]. Thurston's lectures [[#References|[a4]]] contain an excellent exposition of this theorem for manifolds of constant curvature $  - 1 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Gromov,  "Hyperbolic groups"  S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer  (1987)  pp. 75–263</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.D. Mostow,  "Quasi-conformal mappings in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002022.png" />-space and the strong rigidity of space-form"  ''IHES Publ. Math.'' , '''34'''  (1968)  pp. 53–104</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P. Pansu,  "Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un"  ''Ann. of Math.'' , '''129''' :  1  (1989)  pp. 1–61</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Thurston,  "The geometry and topology of 3-manifolds" , ''Lecture Notes'' , Princeton Univ. Press  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Gromov,  "Hyperbolic groups"  S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer  (1987)  pp. 75–263</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.D. Mostow,  "Quasi-conformal mappings in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q110/q110020/q11002022.png" />-space and the strong rigidity of space-form"  ''IHES Publ. Math.'' , '''34'''  (1968)  pp. 53–104</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P. Pansu,  "Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un"  ''Ann. of Math.'' , '''129''' :  1  (1989)  pp. 1–61</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Thurston,  "The geometry and topology of 3-manifolds" , ''Lecture Notes'' , Princeton Univ. Press  (1976)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


A mapping $ f : X \rightarrow Y $, where $ ( X,d _ {X} ) $ and $ ( Y,d _ {Y} ) $ are metric spaces (cf. Metric space), for which there exist two constants $ \lambda > 0 $ and $ k \geq 0 $ such that for all $ x $ and $ x ^ \prime $ in $ X $:

$$ \lambda ^ {- 1 } d _ {X} ( x,x ^ \prime ) - k \leq d _ {Y} ( f ( x ) ,f ( x ^ \prime ) ) \leq \lambda d _ {X} ( x,x ^ \prime ) + k. $$

This property expresses the fact that $ f $ is "Lipschitz in the large" (cf. also Lipschitz constant). Such a mapping $ f $ is also called a $ ( \lambda,k ) $- quasi-isometry.

Note that this definition, which is commonly used now (see [a1], §7.2.G), does not imply that $ f $ is continuous. In [a4], §5.9, W. Thurston considers mappings $ f $ satisfying the property above but with right-hand side replaced by $ \lambda d _ {X} ( x,x ^ \prime ) $. Such a mapping is continuous (cf. Continuous mapping) and Thurston calls it a pseudo-isometry. Some authors (see, e.g., [a3]) use the word quasi-isometry to denote a mapping having the property above, with the further condition that the image $ f ( X ) $ is $ \delta $- dense in $ Y $, for some real number $ \delta $.

The importance of quasi-isometries has been fully realized in the proof of Mostow's rigidity theorem [a2]. Thurston's lectures [a4] contain an excellent exposition of this theorem for manifolds of constant curvature $ - 1 $.

References

[a1] M. Gromov, "Hyperbolic groups" S.M. Gersten (ed.) , Essays in Group Theory , MSRI Publ. , 8 , Springer (1987) pp. 75–263
[a2] G.D. Mostow, "Quasi-conformal mappings in -space and the strong rigidity of space-form" IHES Publ. Math. , 34 (1968) pp. 53–104
[a3] P. Pansu, "Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un" Ann. of Math. , 129 : 1 (1989) pp. 1–61
[a4] W. Thurston, "The geometry and topology of 3-manifolds" , Lecture Notes , Princeton Univ. Press (1976)
How to Cite This Entry:
Quasi-isometry. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-isometry&oldid=48387
This article was adapted from an original article by A. Papadopoulos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article