Namespaces
Variants
Actions

Difference between revisions of "Hutchinson equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Suppose a population inhabits a bounded homogeneous area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103801.png" /> with piecewise-smooth boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103802.png" />. Assume that its food base regularly restores itself to a certain level, whilst the migration factor is so high that complete mixing takes place. In [[#References|[a1]]] it was postulated that under these idealized conditions the variation in population density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103803.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103804.png" /> is the current size of the population and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103805.png" /> is the average number of the population, which depends upon the size of the habitat and the amount of food available, obeys the law
+
<!--
 +
h1103801.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/H110/H.1100380 Hutchinson equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103806.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103807.png" /> is the Malthusian coefficient of linear growth, provided that the age of sexual maturity of females is taken as the unit of time. This equation is called the Hutchinson equation. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103808.png" />, the attractor of positive solutions of the equation is its unit state of equilibrium, whilst for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h1103809.png" /> it is an orbitally exponentially stable cycle. This assertion is mainly based on the results of numerical analysis (significantly less was obtained by purely mathematical methods, [[#References|[a2]]]).
+
Suppose a population inhabits a bounded homogeneous area  $  \Omega \subset  \mathbf R  ^ {2} $
 +
with piecewise-smooth boundary  $  \partial  \Omega $.
 +
Assume that its food base regularly restores itself to a certain level, whilst the migration factor is so high that complete mixing takes place. In [[#References|[a1]]] it was postulated that under these idealized conditions the variation in population density  $  n ( t ) = { {N ( t ) } / K } $,
 +
where  $  N ( t ) $
 +
is the current size of the population and  $  K $
 +
is the average number of the population, which depends upon the size of the habitat and the amount of food available, obeys the law
  
As <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038010.png" /> increases, the Hutchinson cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038011.png" /> acquires a distinctive relaxation character, which is evident from the following facts [[#References|[a3]]]. Assume, for the sake of being specific, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038013.png" />. Then the largest value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038014.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038015.png" /> is reached at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038016.png" />:
+
$$
 +
{\dot{n} } = \lambda [ 1 - n ( t - 1 ) ] n, \quad \lambda > 0.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038017.png" /></td> </tr></table>
+
Here,  $  \lambda $
 +
is the Malthusian coefficient of linear growth, provided that the age of sexual maturity of females is taken as the unit of time. This equation is called the Hutchinson equation. For  $  \lambda < {\pi / 2 } $,
 +
the attractor of positive solutions of the equation is its unit state of equilibrium, whilst for  $  \lambda > {\pi / 2 } $
 +
it is an orbitally exponentially stable cycle. This assertion is mainly based on the results of numerical analysis (significantly less was obtained by purely mathematical methods, [[#References|[a2]]]).
  
The smallest value, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038018.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038019.png" /> is realized at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038020.png" />, where
+
As  $  \lambda $
 +
increases, the Hutchinson cycle  $  n _ {0} ( t, \lambda ) $
 +
acquires a distinctive relaxation character, which is evident from the following facts [[#References|[a3]]]. Assume, for the sake of being specific, that  $  n _ {0} ( - 1, \lambda ) = 1 $
 +
and  $  {\dot{n} } _ {0} ( - 1, \lambda ) > 0 $.  
 +
Then the largest value  $  n _ { \max  ,0 } $
 +
of the function $  n _ {0} ( t, \lambda ) $
 +
is reached at $  t = 0 $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038021.png" /></td> </tr></table>
+
$$
 +
n _ { \max  ,0 } = { \mathop{\rm exp} } ( \lambda - 1 ) + {
 +
\frac{1}{2e }
 +
} + O ( { \mathop{\rm exp} } ( - \lambda ) ) .
 +
$$
 +
 
 +
The smallest value,  $  n _ { \min  ,0 } $
 +
of the function  $  n _ {0} ( \lambda,t ) $
 +
is realized at  $  t = 1 + t _ {0} $,
 +
where
 +
 
 +
$$
 +
t _ {0} = {
 +
\frac{ { \mathop{\rm ln} } \lambda }{\lambda - 1 }
 +
} + O \left ( {
 +
\frac{ { \mathop{\rm ln} }  ^ {2} \lambda }{\lambda  ^ {3} }
 +
} \right ) .
 +
$$
  
 
The asymptotic equality
 
The asymptotic equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038022.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm ln} } n _ { \min  ,0 } = - { \mathop{\rm exp} } \lambda + 2 \lambda - 1 + {
 +
\frac{1 + ( 1 + \lambda ) { \mathop{\rm ln} } \lambda } \lambda
 +
} +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038023.png" /></td> </tr></table>
+
$$
 +
+
 +
O \left ( {
 +
\frac{ { \mathop{\rm ln} }  ^ {2} \lambda }{\lambda  ^ {2} }
 +
} \right )
 +
$$
  
 
is valid.
 
is valid.
Line 23: Line 73:
 
If migration across the habitat's boundary is forbidden, the migration factor results in the boundary value problem
 
If migration across the habitat's boundary is forbidden, the migration factor results in the boundary value problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038024.png" /></td> </tr></table>
+
$$
 +
{\dot{n} } = D \Delta n + \lambda [ 1 - n ( t - 1,x ) ] n, \quad \left . {
 +
\frac{\partial  n }{\partial  \nu }
 +
} \right | _ {\partial  \Omega }  = 0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038026.png" /> is the [[Laplace operator|Laplace operator]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038027.png" /> is the mobility coefficient, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038028.png" /> is the direction of the external normal. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110380/h11038029.png" /> decreases, Hutchinson's cycle loses stability as a result of spacial perturbations connected with the appearance of so-called self-organization regimes, which are simultaneously complexly and regularly arranged towards spacial and temporal variables [[#References|[a3]]].
+
where $  x \in \mathbf R  ^ {2} $,  
 +
$  \Delta $
 +
is the [[Laplace operator|Laplace operator]], $  D $
 +
is the mobility coefficient, and $  \nu $
 +
is the direction of the external normal. When $  D $
 +
decreases, Hutchinson's cycle loses stability as a result of spacial perturbations connected with the appearance of so-called self-organization regimes, which are simultaneously complexly and regularly arranged towards spacial and temporal variables [[#References|[a3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Hutchinson,  "Circular causal systems in ecology"  ''Ann. N.Y. Acad. Sci.'' , '''50'''  (1948–1950)  pp. 221–246</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Hale,  "Theory of functional differential equations" , Springer  (1977)  (Edition: Second)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.Yu. Kolesov,  Yu.S. Kolesov,  "Relaxation oscillation in mathematical models of ecology"  ''Proc. Steklov Inst. Math.'' , '''199''' :  1  (1995)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Hutchinson,  "Circular causal systems in ecology"  ''Ann. N.Y. Acad. Sci.'' , '''50'''  (1948–1950)  pp. 221–246</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Hale,  "Theory of functional differential equations" , Springer  (1977)  (Edition: Second)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.Yu. Kolesov,  Yu.S. Kolesov,  "Relaxation oscillation in mathematical models of ecology"  ''Proc. Steklov Inst. Math.'' , '''199''' :  1  (1995)  (In Russian)</TD></TR></table>

Latest revision as of 22:11, 5 June 2020


Suppose a population inhabits a bounded homogeneous area $ \Omega \subset \mathbf R ^ {2} $ with piecewise-smooth boundary $ \partial \Omega $. Assume that its food base regularly restores itself to a certain level, whilst the migration factor is so high that complete mixing takes place. In [a1] it was postulated that under these idealized conditions the variation in population density $ n ( t ) = { {N ( t ) } / K } $, where $ N ( t ) $ is the current size of the population and $ K $ is the average number of the population, which depends upon the size of the habitat and the amount of food available, obeys the law

$$ {\dot{n} } = \lambda [ 1 - n ( t - 1 ) ] n, \quad \lambda > 0. $$

Here, $ \lambda $ is the Malthusian coefficient of linear growth, provided that the age of sexual maturity of females is taken as the unit of time. This equation is called the Hutchinson equation. For $ \lambda < {\pi / 2 } $, the attractor of positive solutions of the equation is its unit state of equilibrium, whilst for $ \lambda > {\pi / 2 } $ it is an orbitally exponentially stable cycle. This assertion is mainly based on the results of numerical analysis (significantly less was obtained by purely mathematical methods, [a2]).

As $ \lambda $ increases, the Hutchinson cycle $ n _ {0} ( t, \lambda ) $ acquires a distinctive relaxation character, which is evident from the following facts [a3]. Assume, for the sake of being specific, that $ n _ {0} ( - 1, \lambda ) = 1 $ and $ {\dot{n} } _ {0} ( - 1, \lambda ) > 0 $. Then the largest value $ n _ { \max ,0 } $ of the function $ n _ {0} ( t, \lambda ) $ is reached at $ t = 0 $:

$$ n _ { \max ,0 } = { \mathop{\rm exp} } ( \lambda - 1 ) + { \frac{1}{2e } } + O ( { \mathop{\rm exp} } ( - \lambda ) ) . $$

The smallest value, $ n _ { \min ,0 } $ of the function $ n _ {0} ( \lambda,t ) $ is realized at $ t = 1 + t _ {0} $, where

$$ t _ {0} = { \frac{ { \mathop{\rm ln} } \lambda }{\lambda - 1 } } + O \left ( { \frac{ { \mathop{\rm ln} } ^ {2} \lambda }{\lambda ^ {3} } } \right ) . $$

The asymptotic equality

$$ { \mathop{\rm ln} } n _ { \min ,0 } = - { \mathop{\rm exp} } \lambda + 2 \lambda - 1 + { \frac{1 + ( 1 + \lambda ) { \mathop{\rm ln} } \lambda } \lambda } + $$

$$ + O \left ( { \frac{ { \mathop{\rm ln} } ^ {2} \lambda }{\lambda ^ {2} } } \right ) $$

is valid.

If migration across the habitat's boundary is forbidden, the migration factor results in the boundary value problem

$$ {\dot{n} } = D \Delta n + \lambda [ 1 - n ( t - 1,x ) ] n, \quad \left . { \frac{\partial n }{\partial \nu } } \right | _ {\partial \Omega } = 0, $$

where $ x \in \mathbf R ^ {2} $, $ \Delta $ is the Laplace operator, $ D $ is the mobility coefficient, and $ \nu $ is the direction of the external normal. When $ D $ decreases, Hutchinson's cycle loses stability as a result of spacial perturbations connected with the appearance of so-called self-organization regimes, which are simultaneously complexly and regularly arranged towards spacial and temporal variables [a3].

References

[a1] G. Hutchinson, "Circular causal systems in ecology" Ann. N.Y. Acad. Sci. , 50 (1948–1950) pp. 221–246
[a2] J. Hale, "Theory of functional differential equations" , Springer (1977) (Edition: Second)
[a3] A.Yu. Kolesov, Yu.S. Kolesov, "Relaxation oscillation in mathematical models of ecology" Proc. Steklov Inst. Math. , 199 : 1 (1995) (In Russian)
How to Cite This Entry:
Hutchinson equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hutchinson_equation&oldid=47282
This article was adapted from an original article by Yu.S. Kolesov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article