Namespaces
Variants
Actions

Difference between revisions of "Kirby calculus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''Kirby moves''
 
''Kirby moves''
  
A set of moves between different surgery presentations of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300301.png" />-manifold.
+
A set of moves between different surgery presentations of a $3$-manifold.
  
W.B.R. Lickorish [[#References|[a3]]] and A.D. Wallace [[#References|[a4]]] showed that any orientable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300302.png" />-manifold may be obtained as the result of [[Surgery|surgery]] on some framed link in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300303.png" />-sphere.
+
W.B.R. Lickorish [[#References|[a3]]] and A.D. Wallace [[#References|[a4]]] showed that any orientable $3$-manifold may be obtained as the result of [[Surgery|surgery]] on some framed link in the $3$-sphere.
  
A framed link is a finite, disjoint collection of smoothly embedded circles, with an integer (framing) assigned to each circle. R. Kirby [[#References|[a2]]] described two operations (the calculus) on a framed link and proved that two different framed links, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300304.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300305.png" />, yield the same <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300306.png" />-manifold if and only if one can pass from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300307.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300308.png" /> by a sequence of these operations.
+
A framed link is a finite, disjoint collection of smoothly embedded circles, with an integer (framing) assigned to each circle. R. Kirby [[#References|[a2]]] described two operations (the calculus) on a framed link and proved that two different framed links, $L$ and $L'$, yield the same $3$-manifold if and only if one can pass from $L$ to $L'$ by a sequence of these operations.
  
1) Blow-up: One may add or subtract from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k1300309.png" /> an unknotted circle with framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003010.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003011.png" />, which is separated from the other circles by an embedded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003012.png" />-sphere.
+
1) Blow-up: One may add or subtract from $L$ an unknotted circle with framing $1$ or $-1$, which is separated from the other circles by an embedded $2$-sphere.
  
2) Handle slide: Given two circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003015.png" />, one may replace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003017.png" /> obtained as follows. First, push <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003018.png" /> off itself (missing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003019.png" />) using the framing to get <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003020.png" />. Then, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003021.png" /> be a band sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003022.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003023.png" />. Framing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003024.png" /> is changed by taking the sum of framings on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003025.png" /> and on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003026.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003027.png" /> algebraic linking number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003028.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003029.png" />.
+
2) Handle slide: Given two circles $\gamma_i$ and $\gamma_j$ in $L$, one may replace $\gamma_j$ with $\gamma_j'$ obtained as follows. First, push $\gamma_i$ off itself (missing $L$) using the framing to get $\gamma_i'$. Then, let $\gamma_j'$ be a band sum of $\gamma_i'$ with $\gamma_j$. Framing on $\gamma_j$ is changed by taking the sum of framings on $\gamma_i$ and on $\gamma_j$ with $\pm$ algebraic linking number of $\gamma_i$ with $\gamma_j$.
  
R.P. Fenn and C.P. Rourke [[#References|[a1]]] proved that these operations are equivalent to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003031.png" />-move, where links <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003033.png" /> are identical except in a part where an arbitrary number of parallel strands of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003034.png" /> are passing through an unknot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003035.png" /> with framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003036.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003037.png" />). In the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003038.png" /> the unknot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003039.png" /> disappears and the parallel strands of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003040.png" /> are given one full right-hand (respectively, left-hand) twist.
+
R.P. Fenn and C.P. Rourke [[#References|[a1]]] proved that these operations are equivalent to a $K$-move, where links $L$ and $L'$ are identical except in a part where an arbitrary number of parallel strands of $L$ are passing through an unknot $\gamma_0$ with framing $-1$ (or $+1$). In the link $L'$ the unknot $\gamma_0$ disappears and the parallel strands of $L$ are given one full right-hand (respectively, left-hand) twist.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.P. Fenn,  C.P. Rourke,  "On Kirby's calculus of links"  ''Topology'' , '''18'''  (1979)  pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Kirby,  "A calculus for framed links in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003041.png" />"  ''Invent. Math.'' , '''45'''  (1978)  pp. 35–56</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.B.R. Lickorish,  "A representation of orientable combinatorial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k130/k130030/k13003042.png" />-manifolds"  ''Ann. Math.'' , '''76'''  (1962)  pp. 531–540</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A.H. Wallace,  "Modification and cobounding manifolds"  ''Canad. J. Math.'' , '''12'''  (1960)  pp. 503–528</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.P. Fenn,  C.P. Rourke,  "On Kirby's calculus of links"  ''Topology'' , '''18'''  (1979)  pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Kirby,  "A calculus for framed links in $S^3$"  ''Invent. Math.'' , '''45'''  (1978)  pp. 35–56</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.B.R. Lickorish,  "A representation of orientable combinatorial $3$-manifolds"  ''Ann. Math.'' , '''76'''  (1962)  pp. 531–540</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A.H. Wallace,  "Modification and cobounding manifolds"  ''Canad. J. Math.'' , '''12'''  (1960)  pp. 503–528</TD></TR></table>

Latest revision as of 08:53, 25 August 2014

Kirby moves

A set of moves between different surgery presentations of a $3$-manifold.

W.B.R. Lickorish [a3] and A.D. Wallace [a4] showed that any orientable $3$-manifold may be obtained as the result of surgery on some framed link in the $3$-sphere.

A framed link is a finite, disjoint collection of smoothly embedded circles, with an integer (framing) assigned to each circle. R. Kirby [a2] described two operations (the calculus) on a framed link and proved that two different framed links, $L$ and $L'$, yield the same $3$-manifold if and only if one can pass from $L$ to $L'$ by a sequence of these operations.

1) Blow-up: One may add or subtract from $L$ an unknotted circle with framing $1$ or $-1$, which is separated from the other circles by an embedded $2$-sphere.

2) Handle slide: Given two circles $\gamma_i$ and $\gamma_j$ in $L$, one may replace $\gamma_j$ with $\gamma_j'$ obtained as follows. First, push $\gamma_i$ off itself (missing $L$) using the framing to get $\gamma_i'$. Then, let $\gamma_j'$ be a band sum of $\gamma_i'$ with $\gamma_j$. Framing on $\gamma_j$ is changed by taking the sum of framings on $\gamma_i$ and on $\gamma_j$ with $\pm$ algebraic linking number of $\gamma_i$ with $\gamma_j$.

R.P. Fenn and C.P. Rourke [a1] proved that these operations are equivalent to a $K$-move, where links $L$ and $L'$ are identical except in a part where an arbitrary number of parallel strands of $L$ are passing through an unknot $\gamma_0$ with framing $-1$ (or $+1$). In the link $L'$ the unknot $\gamma_0$ disappears and the parallel strands of $L$ are given one full right-hand (respectively, left-hand) twist.

References

[a1] R.P. Fenn, C.P. Rourke, "On Kirby's calculus of links" Topology , 18 (1979) pp. 1–15
[a2] R. Kirby, "A calculus for framed links in $S^3$" Invent. Math. , 45 (1978) pp. 35–56
[a3] W.B.R. Lickorish, "A representation of orientable combinatorial $3$-manifolds" Ann. Math. , 76 (1962) pp. 531–540
[a4] A.H. Wallace, "Modification and cobounding manifolds" Canad. J. Math. , 12 (1960) pp. 503–528
How to Cite This Entry:
Kirby calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kirby_calculus&oldid=33131
This article was adapted from an original article by Joanna Kania-Bartoszyńska (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article