Weber equation

From Encyclopedia of Mathematics
Jump to: navigation, search

A second-order ordinary linear differential equation:


in which the point is strongly singular (cf. Singular point). An equation of this type was first studied by H. Weber in potential theory in connection with the parabolic cylinder [1]; it is the result of separation of variables for the Laplace equation in parabolic coordinates. The substitution , converts the Weber equation to the Whittaker equation. It is a special case of a confluent hypergeometric equation. The substitution converts Weber's equation into

Solutions of equation (*) are known as parabolic cylinder functions or as Weber–Hermite functions. In particular, if is a non-negative integer, equation (*) is satisfied by the function

where is the Hermite polynomial (cf. Hermite polynomials) [2], [3], [4].


[1] H.F. Weber, "Ueber die Integration der partiellen Differentialgleichung " Math. Ann. , 1 (1869) pp. 1–36
[2] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2
[3] H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953)
[4] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
How to Cite This Entry:
Weber equation. N.Kh. Rozov (originator), Encyclopedia of Mathematics. URL:
This text originally appeared in Encyclopedia of Mathematics - ISBN 1402006098