Namespaces
Variants
Actions

Riesz space

From Encyclopedia of Mathematics
Jump to: navigation, search

vector lattice

A real partially ordered vector space (cf. Partially ordered set; Vector space) in which

1) the vector space structure and the partial order are compatible. i.e. from and follows that and from , , , follows ;

2) for any two elements there exists . In particular, the supremum and infimum of any finite set exist.

In Soviet scientific literature Riesz spaces are usually called -lineals. Such spaces were first introduced by F. Riesz in 1928.

The space of real continuous functions with the pointwise order is an example of a Riesz space. For any element of a Riesz space one can define , and . It turns out that . In Riesz spaces one can introduce two types of convergence of a sequence . Order convergence, -convergence: if there exist a monotone increasing sequence and a monotone decreasing sequence such that and . Relative uniform convergence, -convergence: if there exists an element such that for any there exists an such that for (-convergence is also called convergence with a regulator). The concepts of - and -convergence have many of the usual properties of convergence of numerical sequences and can be naturally generalized to nets .

A Riesz space is called Archimedean if and for imply . In Archimedean Riesz spaces, and imply (, ), and -convergence implies -convergence.

References

[1] F. Riesz, "Sur la décomposition des opérations fonctionelles linéaires" , Atti congress. internaz. mathematici (Bologna, 1928) , 3 , Zanichelli (1930) pp. 143–148
[2] W.A.J. Luxemburg, A.C. Zaanen, "Riesz spaces" , I , North-Holland (1971)
[3] B.Z. Vulikh, "Introduction to the theory of partially ordered spaces" , Wolters-Noordhoff (1967) (Translated from Russian)


Comments

A Riesz subspace of a Riesz space is a linear subspace of such that and are in whenever (where the sup and inf are those of ). A subspace of that is an order ideal, i.e. , , imply that , is called a Riesz ideal. Such subspaces are called sublineals and normal sublineals in the Soviet literature. A band is a Riesz ideal such that in for if exists in . A band is often called a component in the Soviet literature.

A linear operator from a Riesz space to a Riesz space is called positive if for all , . A set in is called order bounded if there exist such that for all . The linear operator is called order bounded if it takes order-bounded sets to order-bounded sets. Taking the positive operators as the positive cone defines an order structure on the space of order-bounded operators, turning it into a Dedekind-complete Riesz space (the Freudenthal–Kantorovich theorem). Recall that a lattice is Dedekind complete if every subset bounded from below (respectively above) has an inf (respectively sup). A positive operator is order bounded, and so are differences of positive operators, which are called regular operators. If is Dedekind complete, the converse holds: Every order-bounded operator admits a Jordan decomposition as a difference of two positive operators.

A norm on a Riesz space is a Riesz norm if implies . A Riesz semi-norm is a semi-norm with the same compatibility conditions. A Riesz space with a Riesz norm is a normed Riesz space. A norm-complete normed Riesz space is a Banach lattice. An order-bounded operator from a Banach lattice to a Dedekind-complete normed Riesz space is norm bounded.

Let be the space of order-bounded operators from a Riesz space to a Dedekind-complete Riesz space . is called sequentially order continuous, or -order continuous, if for every sequence (i.e. that is monotonically decreasing to ) it follows that ; it is called order continuous if for every downwards directed system in (cf. Directed set). The Soviet terminology for order-continuous and sequentially order-continuous linear operators is o-linear and (o)-linear. The order-continuous and -order continuous operators are bands in . The order dual of a Riesz space is the space of order-bounded operators of into . The result that this order dual is Dedekind complete goes back to F. Riesz.

There is a second important concept of duality in Riesz space theory, reminiscent of both linear duality and the algebraic geometric duality: "ideals zero sets" , that is basic to scheme theory. It is called Baker–Benyon duality (see the volume with supplementary articles).

In the theory of linear topological spaces (cf. Topological vector space) the following criterion for boundedness of a set is used: A set B is bounded (in this theory) if and only if for every sequence , , and sequence of real numbers converging to zero, one has that converges to zero as . The question arises whether order-bounded sets in a Riesz space can be characterized in this way, using instead order convergence of the to zero. For arbitrary Dedekind-complete Riesz spaces this need not be true. The Dedekind-complete Riesz spaces for which this criterion holds are called -spaces.

Let now be a normed space and a Dedekind-complete Riesz space. A linear operator is called bo-linear if in norm implies in order convergence. If is a -space, then is bo-linear if and only if the image of the unit sphere in is order bounded. The element of defined by

is then called an abstract norm for the operator .

There is a variety of Riesz space analogues of Hahn–Banach type extension and existence theorems. A selection follows. Let be a normed space, a linear subset of and a bo-linear operator into a Dedekind-complete Riesz space . Suppose that possesses an abstract norm. Then the operator admits a bo-linear extension to all of with the same abstract norm. This is one of the Kantorovich extension theorems. Another extension theorem for Riesz spaces, also due to B.Z. Kantorovich, concerns the extension of positive operators: Let be a Riesz space and a linear subset that majorizes , i.e. for every there is an such that . Let be a positive additive operator from into a Dedekind-complete Riesz space . Then there exists an additive and positive extension of to all of . Using these and/or related extension theorems one can show that a positive linear functional on a Riesz subspace of a Riesz space that is majorized by a Riesz semi-norm can be extended to a positive functional on all of , a result which in turn serves to discuss when the order dual of is at least non-zero.

Examples of Riesz spaces are provided by spaces of real-valued functions on a topological space (possibly, extended real functions), where the order is defined pointwise. As in the case of, e.g., Banach algebras (cf. Banach algebra), where the Gel'fand representation provides an answer, one asks whether an arbitrary Riesz space can be seen as a space of real-valued functions on a suitable space (of ideals). The answer for Riesz spaces is given by the Yosida representation theorem and its relatives.

In the integration theory (of real functions) a basic role is played by such operations as , , where , , which makes at least potentially credible that Riesz spaces might provide a suitable abstract setting for integration theory. This is indeed the case in the form of the Freudenthal spectral theorem, which will be discussed below.

Let be a lattice with zero, . Let be a non-empty subset of ; the set of that are disjoint from , i.e. for all , is called the disjoint complement of in and is denoted by . In a Riesz space two elements are called disjoint if . (This agrees with the previous definition if and are both positive.)

Given a band in a Riesz space , the disjoint complement is also a band. If is Dedekind complete, . In general, a band such that is called a projection band. A Riesz space is said to have the (principal) projection property if every (principal) band is a projection band. Thus, a Dedekind-complete Riesz space has the projection property and, a fortiori, the principal projection property.

Let be a Riesz space with the principal projection property, let be a non-zero positive element of and let be an element in the band generated by . Let for , and let be the component of in the band generated by under the decomposition . The set is called the spectral system of with respect to . Now suppose there is a finite interval such that for some . Then for and for . For every partition : of one forms the lower and upper sums

One then has the following result in abstract integration theory, known as the Freudenthal spectral theorem. Let , , , , , be as above. Then

In the case that is a Riesz space of real-valued functions on a space (especially a subset of ) and , this spectral theorem expresses approximation properties of functions in by "step functions" . The Radon–Nikodým theorem in measure theory and the Poisson formula for bounded harmonic functions on an open disc are special cases of the spectral theorem. The Freudenthal spectral theorem was one of the starting points of Riesz space theory.

References

[a1] A.C. Zaanen, "Riesz spaces" , II , North-Holland (1983)
[a2] H.H. Schaefer, "Banach lattices and positive operators" , Springer (1974)
[a3] E. de Jonge, A.C.M. van Rooy, "Introduction to Riesz spaces" , Tracts , 8 , Math. Centre (1977)
[a4] G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973)
[a5] B.Z. Kantorovich, B.Z. Vulikh, A.G. Pinsker, "Functional analysis in partially ordered spaces" , Moscow (1950) (In Russian)
[a6] H. Freudenthal, "Teilweise geordneten Moduln" Proc. Royal Acad. Sci. Amsterdam , 39 (1936) pp. 641–651
[a7] H. Nakano, "Modern spectral theory" , Maruzen (1950)
How to Cite This Entry:
Riesz space. V.I. Sobolev (originator), Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Riesz_space&oldid=17299
This text originally appeared in Encyclopedia of Mathematics - ISBN 1402006098