Oscillator, harmonic

From Encyclopedia of Mathematics
Jump to: navigation, search

A system with one degree of freedom whose oscillations are described by the equation

The phase trajectories are circles, the period of the oscillations, , does not depend on the amplitude. The potential energy of a harmonic oscillator depends quadratically on :

Examples of harmonic oscillators are: small oscillations of a pendulum, oscillations of a material point fastened on a spring with constant rigidity, and the simplest electric oscillatory circuit. The terms "harmonic oscillator" and "linear oscillatorlinear oscillator" are often used as synonyms.

The oscillations of a quantum-mechanical linear oscillator are described by the Schrödinger equation

Here, is the mass of a particle, is its energy, is the Planck constant, and is the frequency. A quantum-mechanical linear oscillator has a discrete spectrum of energy levels, , ; the corresponding eigen functions can be expressed in terms of Hermite functions (cf. Hermite function).

The term "oscillator" is used in relation to (mechanical or physical) systems with a finite number of degrees of freedom whose motion is oscillatory (e.g. a van der Pol oscillator — a multi-dimensional linear oscillator representing the oscillations of a material point situated in a potential force field with a potential which is a positive-definite quadratic form in the coordinates, see van der Pol equation). There is evidently no unique interpretation of the term "oscillator" , or even of "linear oscillator" .


[1] L.I. Mandel'shtam, "Lectures on the theory of oscillations" , Moscow (1972) (In Russian)
[2] L.D. Landau, E.M. Lifshitz, "Quantum mechanics" , Pergamon (1965) (Translated from Russian)



[a1] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
[a2] L.I. Schiff, "Quantum mechanics" , McGraw-Hill (1949)
How to Cite This Entry:
Oscillator, harmonic. M.V. Fedoryuk (originator), Encyclopedia of Mathematics. URL:,_harmonic&oldid=16351
This text originally appeared in Encyclopedia of Mathematics - ISBN 1402006098