Namespaces
Variants
Actions

Mellin transform

From Encyclopedia of Mathematics
Jump to: navigation, search

The integral transform

The substitution reduces it to the Laplace transform. The Mellin transform is used for solving a specific class of planar problems for harmonic functions in a sectorial domain, of problems in elasticity theory, etc.

The inversion theorem. Suppose that and that the function has bounded variation in a neighbourhood of the point . Then

The representation theorem. Suppose that the function is summable with respect to on and has bounded variation in a neighbourhood of the point . Then

where

References

[1] H. Mellin, "Ueber die fundamentelle Wichtigkeit des Satzes von Cauchy für die Theorie der Gamma- und hypergeometrischen Funktionen" Acta Soc. Sci. Fennica , 21 : 1 (1896) pp. 1–115
[2] H. Mellin, "Ueber den Zusammenhang zwischen linearen Differential- und Differenzengleichungen" Acta Math. , 25 (1902) pp. 139–164 Zbl 32.0348.02
[3] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) MR0942661 Zbl 0017.40404 Zbl 63.0367.05
[4] V.A. Ditkin, A.P. Prudnikov, "Transformations intégrales et calcul opérationnel" , MIR (1978) (Translated from Russian) MR0622209 MR0622210 Zbl 0375.44001


Comments

If denotes the Mellin transform of , then the Parseval equality takes the form:

if .

The Mellin transform also serves to link Dirichlet series with automorphic functions (cf. Automorphic function); in particular, the inversion formula plays a role in the proof of a functional equation for Dirichlet series similar to that for the Riemann zeta-function. Cf. [a1][a5].

References

[a1] E. Hecke, "Ueber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung" Math. Ann. , 112 (1936) pp. 664–699 Zbl 0014.01601 Zbl 62.1207.01 Zbl 63.0264.03
[a2] A. Weil, "Ueber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung" Math. Ann. , 168 (1967) pp. 149–156
[a3] A. Weil, "Zeta functions and Mellin transforms" , Algebraic geometry (Bombay Coll., 1968) , Oxford Univ. Press & Tata Inst. (1968) pp. 409–426 MR0262247 Zbl 0193.49104
[a4] A. Ogg, "Modular forms and Dirichlet series" , Benjamin (1969) MR0256993 MR0234918 Zbl 0191.38101
[a5] G. Shimura, "Introduction to the arithmetic theory of automorphic functions" , Princeton Univ. Press & Iwanami-Shoten (1971) pp. §3.6, pp 89–94 MR0314766 Zbl 0221.10029
How to Cite This Entry:
Mellin transform. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Mellin_transform&oldid=23896
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article