# Complete metric space

2010 Mathematics Subject Classification: *Primary:* 54E50 [MSN][ZBL]

A metric space in which each Cauchy sequence converges. A complete metric space is a particular case of a complete uniform space. A closed subset $A$ of a complete metric $(X,d)$ space is itself a complete metric space (with the distance which is restiction of $d$ to $A$). The converse is true in a general metric space: if $(X,d)$ is a metric space, not necessarily complete, and $A\subset X$ is such that $(A,d)$ is complete, then $A$ is necessarily a closed subset.

Given any metric space $(X,d)$ there exists a unique completion of $X$, that is a triple $(Y,\rho,i)$ such that:

- $(Y, \rho)$ is a complete metric space;
- $i: X \to Y$ is an isometric embedding, namely a map such that $d(x,y) = \rho (i(x), i(y))$ for any pair of points $x,y\in X$;
- $i(X)$ is dense in $Y$.

Often people refer to the metric space $(Y, \rho)$ as the completion. Both the space and the isometric embedding are unique up to isometries.

**How to Cite This Entry:**

Complete metric space.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Complete_metric_space&oldid=30896